TY - BOOK A1 - Dyck, Johannes A1 - Giese, Holger T1 - k-Inductive invariant checking for graph transformation systems N2 - While offering significant expressive power, graph transformation systems often come with rather limited capabilities for automated analysis, particularly if systems with many possible initial graphs and large or infinite state spaces are concerned. One approach that tries to overcome these limitations is inductive invariant checking. However, the verification of inductive invariants often requires extensive knowledge about the system in question and faces the approach-inherent challenges of locality and lack of context. To address that, this report discusses k-inductive invariant checking for graph transformation systems as a generalization of inductive invariants. The additional context acquired by taking multiple (k) steps into account is the key difference to inductive invariant checking and is often enough to establish the desired invariants without requiring the iterative development of additional properties. To analyze possibly infinite systems in a finite fashion, we introduce a symbolic encoding for transformation traces using a restricted form of nested application conditions. As its central contribution, this report then presents a formal approach and algorithm to verify graph constraints as k-inductive invariants. We prove the approach's correctness and demonstrate its applicability by means of several examples evaluated with a prototypical implementation of our algorithm. N2 - Während Graphtransformationssysteme einerseits einen ausdrucksstarken Formalismus bereitstellen, existieren andererseits nur eingeschränkte Möglichkeiten für die automatische Analyse. Dies gilt insbesondere für die Analyse von Systemen mit einer Vielzahl an initialen Graphen oder mit großen oder unendlichen Zustandsräumen. Ein möglicher Ansatz, um diese Einschränkungen zu umgehen, sind induktive Invarianten. Allerdings erfordert die Verifkation induktiver Invarianten oft erweitertes Wissen über das zu verifizierende System; weiterhin muss diese Verifikationstechnik mit den spezifischen Problemen der Lokalität und des Mangels an Kontextwissen umgehen. Dieser Bericht betrachtet k-induktive Invarianten - eine Verallgemeinerung induktiver Invarienten - für Graphtransformationssysteme als einen möglichen Ansatz, um diese Probleme anzugehen. Zusätzliches Kontextwissen, das durch die Analyse mehrerer (k) Schritte gewonnen werden kann, macht den entscheidenden Unterschied zu induktiven Invarianten aus und genügt oft, um die gewünschten Invarianten ohne die iterative Entwicklung zusätzlicher Eigenschaften zu verifizieren. Um unendliche Systeme in endlicher Zeit zu analysieren, führen wir eine symbolische Kodierung von Transformationssequenzen ein, die auf verschachtelten Anwendungsbedingungen basiert. Unser zentraler Beitrag ist dann ein formaler Ansatz und Algorithmus zur Verifikation von Graphbedingungen als k-induktive Invarianten. Wir führen einen formalen Beweis, um die Korrektheit unseres Verfahrens nachzuweisen, und demonstrieren die Anwendbarkeit des Verfahrens an mehreren Beispielen, die mit einer prototypischen Implementierung verifiziert wurden. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 119 KW - formal verification KW - static analysis KW - graph transformation KW - typed graph transformation systems KW - graph constraints KW - nested application conditions KW - k-inductive invariants KW - k-induction KW - k-inductive invariant checking KW - transformation sequences KW - s/t-pattern sequences KW - formale Verifikation KW - statische Analyse KW - Graphtransformationen KW - Graphtransformationssysteme KW - Graphbedingungen KW - verschachtelte Anwednungsbedingungen KW - k-induktive Invarianten KW - k-Induktion KW - k-induktives Invariant-Checking KW - Transformationssequenzen KW - Sequenzen von s/t-Pattern Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-397044 SN - 978-3-86956-406-7 SN - 1613-5652 SN - 2191-1665 IS - 119 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Dyck, Johannes A1 - Giese, Holger A1 - Lambers, Leen T1 - Automatic verification of behavior preservation at the transformation level for relational model transformation N2 - The correctness of model transformations is a crucial element for model-driven engineering of high quality software. In particular, behavior preservation is the most important correctness property avoiding the introduction of semantic errors during the model-driven engineering process. Behavior preservation verification techniques either show that specific properties are preserved, or more generally and complex, they show some kind of behavioral equivalence or refinement between source and target model of the transformation. Both kinds of behavior preservation verification goals have been presented with automatic tool support for the instance level, i.e. for a given source and target model specified by the model transformation. However, up until now there is no automatic verification approach available at the transformation level, i.e. for all source and target models specified by the model transformation. In this report, we extend our results presented in [27] and outline a new sophisticated approach for the automatic verification of behavior preservation captured by bisimulation resp. simulation for model transformations specified by triple graph grammars and semantic definitions given by graph transformation rules. In particular, we show that the behavior preservation problem can be reduced to invariant checking for graph transformation and that the resulting checking problem can be addressed by our own invariant checker even for a complex example where a sequence chart is transformed into communicating automata. We further discuss today's limitations of invariant checking for graph transformation and motivate further lines of future work in this direction. N2 - Die Korrektheit von Modelltransformationen ist von zentraler Wichtigkeit bei der Anwendung modellgetriebener Softwareentwicklung für die Entwicklung hochqualitativer Software. Insbesondere verhindert Verhaltensbewahrung als wichtigste Korrektheitseigenschaft die Entstehung semantischer Fehler während des modellgetriebenen Entwicklungsprozesses. Techniken zur Verifikation von Verhaltensbewahrung zeigen, dass bestimmte spezifische Eigenschaften bewahrt bleiben oder, im allgemeineren und komplexeren Fall, dass eine Form von Verhaltensäquivalenz oder Verhaltensverfeinerung zwischen Quell- und Zielmodell der Transformation besteht. Für beide Ansätze existieren automatisierte Werkzeuge für die Verifikation auf der Instanzebene, also zur Überprüfung konkreter Paare aus Quell- und Zielmodellen der Transformation. Allerdings existiert kein automatischer Verifikationsansatz, der auf der Transformationsebene arbeitet, also Aussagen zu allen Quell- und Zielmodellen einer Modelltransformation treffen kann. Dieser Bericht erweitert unsere Vorarbeit und Ergebnisse aus [27] und stellt einen neuen Ansatz zur automatischen Verifikation von Verhaltensbewahrung vor, der auf Bisimulation bzw. Simulation basiert. Dabei werden Modelltransformationen durch Triple-Graph-Grammatiken und Verhaltensdefinitionen mittels Graphtransformationsregeln beschrieben. Insbesondere weisen wir nach, dass das Problem der Verhaltensbewahrung durch Bisimulation auf Invariant-Checking für Graphtransformationssysteme reduziert werden kann und dass das entstehende Invariant-Checking-Problem für ein komplexes Beispiel durch unser Werkzeug zur Verifikation induktiver Invarianten gelöst werden kann. Das Beispiel beschreibt die Transformation von Sequenzdiagrammen in Systeme kommunizierender Automaten. Darüber hinaus diskutieren wir bestehende Einschränkungen von Invariant-Checking für Graphtransformationssysteme und Ansätze für zukünftige Arbeiten in diesem Bereich. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 112 KW - model transformation KW - behavior preservation KW - semantics preservation KW - relational model transformation KW - bisimulation KW - simulation KW - invariant checking KW - transformation level KW - behavioral equivalenc KW - behavioral refinement KW - behavioral abstraction KW - graph transformation systems KW - graph constraints KW - triple graph grammars KW - Modelltransformationen KW - Verhaltensbewahrung KW - relationale Modelltransformationen KW - Bisimulation KW - Simulation KW - Invariant-Checking KW - Transformationsebene KW - Verhaltensäquivalenz KW - Verhaltensverfeinerung KW - Verhaltensabstraktion KW - Graphtransformationssysteme KW - Graph-Constraints KW - Triple-Graph-Grammatiken Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-100279 SN - 978-3-86956-391-6 SN - 1613-5652 SN - 2191-1665 IS - 112 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - THES A1 - Dyck, Johannes T1 - Verification of graph transformation systems with k-inductive invariants T1 - Verifikation von Graphtransformationssystemen mit k-induktiven Invarianten N2 - With rising complexity of today's software and hardware systems and the hypothesized increase in autonomous, intelligent, and self-* systems, developing correct systems remains an important challenge. Testing, although an important part of the development and maintainance process, cannot usually establish the definite correctness of a software or hardware system - especially when systems have arbitrarily large or infinite state spaces or an infinite number of initial states. This is where formal verification comes in: given a representation of the system in question in a formal framework, verification approaches and tools can be used to establish the system's adherence to its similarly formalized specification, and to complement testing. One such formal framework is the field of graphs and graph transformation systems. Both are powerful formalisms with well-established foundations and ongoing research that can be used to describe complex hardware or software systems with varying degrees of abstraction. Since their inception in the 1970s, graph transformation systems have continuously evolved; related research spans extensions of expressive power, graph algorithms, and their implementation, application scenarios, or verification approaches, to name just a few topics. This thesis focuses on a verification approach for graph transformation systems called k-inductive invariant checking, which is an extension of previous work on 1-inductive invariant checking. Instead of exhaustively computing a system's state space, which is a common approach in model checking, 1-inductive invariant checking symbolically analyzes graph transformation rules - i.e. system behavior - in order to draw conclusions with respect to the validity of graph constraints in the system's state space. The approach is based on an inductive argument: if a system's initial state satisfies a graph constraint and if all rules preserve that constraint's validity, we can conclude the constraint's validity in the system's entire state space - without having to compute it. However, inductive invariant checking also comes with a specific drawback: the locality of graph transformation rules leads to a lack of context information during the symbolic analysis of potential rule applications. This thesis argues that this lack of context can be partly addressed by using k-induction instead of 1-induction. A k-inductive invariant is a graph constraint whose validity in a path of k-1 rule applications implies its validity after any subsequent rule application - as opposed to a 1-inductive invariant where only one rule application is taken into account. Considering a path of transformations then accumulates more context of the graph rules' applications. As such, this thesis extends existing research and implementation on 1-inductive invariant checking for graph transformation systems to k-induction. In addition, it proposes a technique to perform the base case of the inductive argument in a symbolic fashion, which allows verification of systems with an infinite set of initial states. Both k-inductive invariant checking and its base case are described in formal terms. Based on that, this thesis formulates theorems and constructions to apply this general verification approach for typed graph transformation systems and nested graph constraints - and to formally prove the approach's correctness. Since unrestricted graph constraints may lead to non-termination or impracticably high execution times given a hypothetical implementation, this thesis also presents a restricted verification approach, which limits the form of graph transformation systems and graph constraints. It is formalized, proven correct, and its procedures terminate by construction. This restricted approach has been implemented in an automated tool and has been evaluated with respect to its applicability to test cases, its performance, and its degree of completeness. N2 - Durch die Komplexität heutiger Software- und Hardwaresysteme und den vermuteten Anstieg der Zahl autonomer und intelligenter Systeme bleibt die Entwicklung korrekter Systeme eine wichtige Herausforderung. Obwohl Testen ein wichtiger Teil des Entwicklungszyklusses ist und bleibt, reichen Tests üblicherweise nicht aus, um die Korrektkeit eines Systems sicherzustellen - insbsondere wenn Systeme beliebig große oder unendliche Zustandsräume oder unendlich viele mögliche initiale Zustände aufweisen. Formale Verifikation nimmt sich dieses Problems an: Nach Darstellung des Systems in einem formalen Modell können Verifikationsansätze und Werkzeuge angewendet werden, um zu analysieren, ob das System seine Spezifikation erfüllt. Ein verbreiteter Formalismus für derartige Modelle sind Graphen und Graphtransformationssysteme. Diese Konzepte basieren auf etablierten mathematischen Grundlagen und sind ausdrucksstark genug, um komplexe Software- oder Hardwaresysteme auf verschiedenen Abstraktionsstufen zu beschreiben. Seit ihrer Einführung in den 70er-Jahren wurden Graphtransformationssysteme stetig weiterentwickelt; entsprechende Forschung thematisiert beispielsweise Ausdrucksstärke, Graphalgorithmen, Anwendungsbeispiele oder Verifikationsansätze. Diese Arbeit beschäftigt sich mit der Verifikation k-induktiver Invarianten für Graphtransformationssysteme - einem Ansatz, der eine existierende Technik zur Verifikation 1-induktiver Invarianten erweitert. Anstatt den Zustandsraum eines Systems zu berechnen, überprüft Verifikation mit 1-Induktion Verhalten (Graphtransformationsregeln) symbolisch, um Schlussfolgerungen zur Gültigkeit von Graphbedingungen zu ziehen. Die Idee basiert auf dem Prinzip eines Induktionsbeweises: Falls der initiale Zustand eines Systems eine Bedingung erfüllt und falls alle Regeln die Erfüllung der Bedingung bewahren, kann auf die Gültigkeit der Bedingung im gesamten Zustandsraum geschlossen werden, ohne diesen tatsächlich zu berechnen. Allerdings bringt dieser Ansatz auch spezifische Nachteile mit sich: Die lokale Natur der Anwendung von Graphregeln führt zu einem Mangel an Kontext während der symbolischen Analyse möglicher Regelanwendungen. Diese Arbeit führt aus, dass dieser Mangel an Kontext teilweise behoben werden kann, indem k-Induktion statt 1-Induktion verwendet wird. Eine k-induktive Invariante ist eine Graphbedingung, deren Gültigkeit in einem Pfad von k-1 Regelanwendungen die Gültigkeit nach jeder etwaigen weiteren Regelanwendung zur Folge hat. Durch die Berücksichtigung solcher Pfade von Transformationen steht mehr Kontext während der Analyse zur Verfügung als bei der Analyse nur einer Regelanwendung bei 1-Induktion. Daher erweitert diese Arbeit bestehende Forschungsergebnisse und eine Implementierung zur Verifikation 1-induktiver Invarianten um k-Induktion. Zusätzlich wird eine Technik vorgestellt, die auch die Analyse der Induktionsbasis symbolisch ausführt. Dies erlaubt die Verifikation von Systemen mit einer unendlichen Zahl an möglichen initialen Zuständen. Sowohl k-induktive Invarianten als auch deren Induktionsbasis werden - für Graphtransformationssysteme - formal beschrieben. Basierend darauf stellt diese Arbeit Theoreme und Kontruktionen vor, die diesen Verifikationsansatz mathemathisch umsetzen und seine Korrektheit beweisen. Da jedoch uneingeschränkte Graphbedingungen in einer möglichen Implementierung zu Nichtterminierung oder langen Ausführungszeiten führen, stellt diese Arbeit auch einen eingeschränkten Verifikationsansatz vor, der die Form der zugelassenen Graphtransformationssysteme und Graphbedingungen in Spezifikationen einschränkt. Auch dieser Ansatz wird formalisiert, bewiesen - und das Verfahren terminiert per Konstruktion. Der Ansatz wurde in Form eines automatisch ausführbaren Verifikationswerkzeugs implementiert und wurde in Bezug auf seine Anwendbarkeit, Performanz und des Grades der Vollständigkeit evaluiert. KW - formal verification KW - graph transformations KW - inductive invariant checking KW - k-induction KW - graph constraints KW - application conditions KW - k-inductive invariant KW - graph transformation systems KW - formale Verifikation KW - Graphtransformationen KW - Verifikation induktiver Invarianten KW - k-Induktion KW - Graphbedingungen KW - Anwendungsbedingungen KW - k-induktive Invariante KW - Graphtransformationssysteme Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442742 ER -