TY - JOUR A1 - Veh, Georg A1 - Korup, Oliver A1 - Walz, Ariane T1 - Hazard from Himalayan glacier lake outburst floods JF - Proceedings of the National Academy of Sciences of the United States of America : PNAS N2 - Sustained glacier melt in the Himalayas has gradually spawned more than 5,000 glacier lakes that are dammed by potentially unstable moraines. When such dams break, glacier lake outburst floods (GLOFs) can cause catastrophic societal and geomorphic impacts. We present a robust probabilistic estimate of average GLOFs return periods in the Himalayan region, drawing on 5.4 billion simulations. We find that the 100-y outburst flood has an average volume of 33.5(+3.7)/(-3.7) x 10(6) m(3) (posterior mean and 95% highest density interval [HDI]) with a peak discharge of 15,600(+2.000)/(-1,800) m(3).S-1. Our estimated GLOF hazard is tied to the rate of historic lake outbursts and the number of present lakes, which both are highest in the Eastern Himalayas. There, the estimated 100-y GLOF discharge (similar to 14,500 m(3).s(-1)) is more than 3 times that of the adjacent Nyainqentanglha Mountains, and at least an order of magnitude higher than in the Hindu Kush, Karakoram, and Western Himalayas. The GLOF hazard may increase in these regions that currently have large glaciers, but few lakes, if future projected ice loss generates more unstable moraine-dammed lakes than we recognize today. Flood peaks from GLOFs mostly attenuate within Himalayan headwaters, but can rival monsoon-fed discharges in major rivers hundreds to thousands of kilometers downstream. Projections of future hazard from meteorological floods need to account for the extreme runoffs during lake outbursts, given the increasing trends in population, infrastructure, and hydropower projects in Himalayan headwaters. KW - atmospheric warming KW - meltwater lakes KW - GLOF KW - extreme-value statistics KW - Bayesian modeling Y1 - 2019 U6 - https://doi.org/10.1073/pnas.1914898117 SN - 0027-8424 VL - 117 IS - 2 SP - 907 EP - 912 PB - National Academy of Sciences CY - Washington ER - TY - THES A1 - Veh, Georg T1 - Outburst floods from moraine-dammed lakes in the Himalayas T1 - Ausbruchsfluten von moränen-gestauten Seen im Himalaya BT - detection, frequency, and hazard BT - Erkennung, Häufigkeit, und Gefährdung N2 - The Himalayas are a region that is most dependent, but also frequently prone to hazards from changing meltwater resources. This mountain belt hosts the highest mountain peaks on earth, has the largest reserve of ice outside the polar regions, and is home to a rapidly growing population in recent decades. One source of hazard has attracted scientific research in particular in the past two decades: glacial lake outburst floods (GLOFs) occurred rarely, but mostly with fatal and catastrophic consequences for downstream communities and infrastructure. Such GLOFs can suddenly release several million cubic meters of water from naturally impounded meltwater lakes. Glacial lakes have grown in number and size by ongoing glacial mass losses in the Himalayas. Theory holds that enhanced meltwater production may increase GLOF frequency, but has never been tested so far. The key challenge to test this notion are the high altitudes of >4000 m, at which lakes occur, making field work impractical. Moreover, flood waves can attenuate rapidly in mountain channels downstream, so that many GLOFs have likely gone unnoticed in past decades. Our knowledge on GLOFs is hence likely biased towards larger, destructive cases, which challenges a detailed quantification of their frequency and their response to atmospheric warming. Robustly quantifying the magnitude and frequency of GLOFs is essential for risk assessment and management along mountain rivers, not least to implement their return periods in building design codes. Motivated by this limited knowledge of GLOF frequency and hazard, I developed an algorithm that efficiently detects GLOFs from satellite images. In essence, this algorithm classifies land cover in 30 years (~1988–2017) of continuously recorded Landsat images over the Himalayas, and calculates likelihoods for rapidly shrinking water bodies in the stack of land cover images. I visually assessed such detected tell-tale sites for sediment fans in the river channel downstream, a second key diagnostic of GLOFs. Rigorous tests and validation with known cases from roughly 10% of the Himalayas suggested that this algorithm is robust against frequent image noise, and hence capable to identify previously unknown GLOFs. Extending the search radius to the entire Himalayan mountain range revealed some 22 newly detected GLOFs. I thus more than doubled the existing GLOF count from 16 previously known cases since 1988, and found a dominant cluster of GLOFs in the Central and Eastern Himalayas (Bhutan and Eastern Nepal), compared to the rarer affected ranges in the North. Yet, the total of 38 GLOFs showed no change in the annual frequency, so that the activity of GLOFs per unit glacial lake area has decreased in the past 30 years. I discussed possible drivers for this finding, but left a further attribution to distinct GLOF-triggering mechanisms open to future research. This updated GLOF frequency was the key input for assessing GLOF hazard for the entire Himalayan mountain belt and several subregions. I used standard definitions in flood hydrology, describing hazard as the annual exceedance probability of a given flood peak discharge [m3 s-1] or larger at the breach location. I coupled the empirical frequency of GLOFs per region to simulations of physically plausible peak discharges from all existing ~5,000 lakes in the Himalayas. Using an extreme-value model, I could hence calculate flood return periods. I found that the contemporary 100-year GLOF discharge (the flood level that is reached or exceeded on average once in 100 years) is 20,600+2,200/–2,300 m3 s-1 for the entire Himalayas. Given the spatial and temporal distribution of historic GLOFs, contemporary GLOF hazard is highest in the Eastern Himalayas, and lower for regions with rarer GLOF abundance. I also calculated GLOF hazard for some 9,500 overdeepenings, which could expose and fill with water, if all Himalayan glaciers have melted eventually. Assuming that the current GLOF rate remains unchanged, the 100-year GLOF discharge could double (41,700+5,500/–4,700 m3 s-1), while the regional GLOF hazard may increase largest in the Karakoram. To conclude, these three stages–from GLOF detection, to analysing their frequency and estimating regional GLOF hazard–provide a framework for modern GLOF hazard assessment. Given the rapidly growing population, infrastructure, and hydropower projects in the Himalayas, this thesis assists in quantifying the purely climate-driven contribution to hazard and risk from GLOFs. N2 - In kaum einer anderen Region treten Abhängigkeit, Nutzen und Gefährdung von Gletscher- und Schneeschmelze so deutlich zu Tage wie im Himalaya. Naturgefahren sind hier allgegenwärtig, wobei eine die Wissenschaftler in den vergangen zwei Jahrzehnten besonders beschäftigte: Ausbrüche von Gletscherseen traten in der Vergangenheit zwar selten, aber meist mit katastrophalen Konsequenzen für die darunterliegenden Berggemeinden auf. Gletscherseeausbrüche (englisches Akronym GLOFs – glacial lake outburst floods) beschreiben den plötzlichen Ausfluss von teils mehreren Millionen Kubikmetern Wasser aus natürlich gedämmten Schmelzwasserseen. Anhaltender Gletscherrückgang in vergangenen Jahrzehnten schuf mehrere tausend Hochgebirgsseen, mit ununterbrochenem Wachstum in Anzahl und Fläche, was den Schluss auf ein möglicherweise vermehrtes Auftreten von GLOFs nahelegte. Diese suggerierte Zunahme von GLOFs konnte jedoch bisher weder getestet noch bestätigt werden, vor allem weil Seen überwiegend jenseits von 4,000 m üNN entstehen, was Feldstudien dort erschwert. Unser Wissen über GLOFs ist daher möglicherweise zu größeren, schadensreichen Ereignissen verschoben, wodurch ihre aktuelle Frequenz, und letztlich auch ihr Zusammenhang mit dem Klimawandel, nur schwer quantifizierbar sind. Mit welcher Wiederkehrrate GLOFs auftreten ist nicht zuletzt entscheidend für Risikoanalyse und -management entlang von Flüssen. Um einer Unterschätzung der tatsächlichen GLOF-Aktivität entgegenzuwirken, entwickelte ich einen Algorithmus, der GLOFs automatisch aus Satellitenbildern detektiert. Der Algorithmus greift auf etwa 30 Jahre kontinuierlich aufgenommene Landsat-Bilder (~1988-2017) zu, und berechnet letztlich die Wahrscheinlichkeit, ob Wasserkörper rasch innerhalb dieser Bildzeitreihe geschrumpft sind. An solchen Stellen suchte ich nach Sedimentverlagerungen im Gerinne flussabwärts, was ein zweites Hauptkriterium für GLOFs ist. Tests und Validierung in etwa 10% des Himalayas bestätigten, dass die Methode robust gegenüber atmosphärischen Störeffekten ist. Mit dem Ziel bisher unbekannte GLOFs zu entdecken, wendete ich daher diesen Algorithmus auf den gesamten Himalaya an. Die Suche ergab 22 neu entdeckte GLOFs, was das bestehende Inventar von 16 bekannten GLOFs seit 1988 mehr als verdoppelte. Das aktualisierte räumliche Verbreitungsmuster bestätigte einmal mehr, dass GLOFs vermehrt im Zentral- und Osthimalaya (Bhutan und Ost-Nepal) auftraten, wohingegen im Norden deutlich weniger GLOFs stattfanden. Entgegen der häufigen Annahme stellte ich jedoch fest, dass die jährliche Häufigkeit von GLOFs in den letzten drei Jahrzehnten konstant blieb. Dadurch hat das Verhältnis von GLOFs pro Einheit See(-fläche) in diesem Zeitraum sogar abgenommen. Dieses räumlich aufgelöste GLOF-Inventar bot nun die Möglichkeit, das Gefährdungspotential durch GLOFs für den gesamten Himalaya und einzelne Regionen zu berechnen. Dafür verwendete ich die in der Hochwasseranalyse gebräuchliche Definition von Gefährdung, welche die jährliche Überschreitungswahrscheinlichkeit einer gewissen Abflussmenge, in diesem Fall des Spitzenabflusses [m3 s-1] am Dammbruch, beschreibt. Das GLOF-Inventar liefert demnach die zeitliche Wahrscheinlichkeit für das Auftreten von GLOFs, während Simulationen von möglichen Spitzenabflüssen für alle heute existierenden ~5,000 Seen im Himalaya die zu erwarteten Magnituden beisteuerten. Mit Extremwertstatistik lässt sich so die mittlere Wiederkehrzeit dieser Spitzenabflüsse errechnen. Ich fand heraus, dass der 100-jährliche Abfluss (die Flutmagnitude, die im Durchschnitt einmal in 100 Jahren erreicht oder überschritten wird) derzeit bei rund 20,600+2,200/–2,300 m³ s-1 für den gesamten Himalaya liegt. Entsprechend der heutigen räumlichen und zeitlichen Verteilung von GLOFs ist die Gefährdung im Osthimalaya am höchsten und in Regionen mit wenig dokumentierten GLOFs vergleichsweise niedrig. Für ein Szenario, in dem der gesamte Himalaya in Zukunft eisfrei sein könnte, errechnete ich zudem das Gefährdungspotential von ~9,500 Übertiefungen unterhalb der heutigen Gletschern, die sich nach deren Abschmelzen mit Wasser füllen könnten. Angenommen, dass die zukünftige GLOF-Rate der heutigen entspricht, könnte der 100-jährliche Abfluss sich mehr als verdoppeln (41,700+5,500/–4,700 m3 s-1), wobei der stärkste regionale Anstieg für den Karakorum zu erwarten wäre. Zusammenfassend formen diese drei Schritte–von der Detektion von GLOFs, über die Bestimmung derer Frequenz, bis zur regionalen Abschätzung von Spitzenabflüssen–das Grundgerüst, das ein moderner Ansatz zur Gefahrenabschätzung von GLOFs benötigt. Angesichts einer wachsenden Exposition von Bevölkerung, Infrastruktur und Wasserkraftanlagen liefert diese Arbeit einen entscheidenden Beitrag, den Anteil des Klimawandels in der Gefährdung und Risiko durch GLOFs zu quantifizieren. KW - GLOF KW - frequency KW - Landsat KW - satellite images KW - classification KW - magnitude KW - Himalaya KW - Karakoram KW - climate change KW - atmospheric warming KW - glacial lakes KW - glaciers KW - meltwater KW - natural hazard KW - GLOF KW - Gletscherseeasubruch KW - Häufigkeit KW - Landsat KW - Satellitenbilder KW - Klassifikation KW - Magnitude KW - Himalaya KW - Karakorum KW - Klimawandel KW - atmosphärische Erwärmung KW - Gletscherseen KW - Gletscher KW - Schmelzwasser KW - Naturgefahr Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436071 ER - TY - THES A1 - Fischer, Melanie T1 - Outburst floods in the Greater Himalayas T1 - Dammbruchfluten in der Großregion des Himalayas BT - from regional susceptibility to local hazard BT - von regionaler Suszeptibilität zu lokaler Gefährdung N2 - High-mountain regions provide valuable ecosystem services, including food, water, and energy production, to more than 900 million people worldwide. Projections hold, that this population number will rapidly increase in the next decades, accompanied by a continued urbanisation of cities located in mountain valleys. One of the manifestations of this ongoing socio-economic change of mountain societies is a rise in settlement areas and transportation infrastructure while an increased power need fuels the construction of hydropower plants along rivers in the high-mountain regions of the world. However, physical processes governing the cryosphere of these regions are highly sensitive to changes in climate and a global warming will likely alter the conditions in the headwaters of high-mountain rivers. One of the potential implications of this change is an increase in frequency and magnitude of outburst floods – highly dynamic flows capable of carrying large amounts of water and sediments. Sudden outbursts from lakes formed behind natural dams are complex geomorphological processes and are often part of a hazard cascade. In contrast to other types of natural hazards in high-alpine areas, for example landslides or avalanches, outburst floods are highly infrequent. Therefore, observations and data describing for example the mode of outburst or the hydraulic properties of the downstream propagating flow are very limited, which is a major challenge in contemporary (glacial) lake outburst flood research. Although glacial lake outburst floods (GLOFs) and landslide-dammed lake outburst floods (LLOFs) are rare, a number of documented events caused high fatality counts and damage. The highest documented losses due to outburst floods since the start of the 20th century were induced by only a few high-discharge events. Thus, outburst floods can be a significant hazard to downvalley communities and infrastructure in high-mountain regions worldwide. This thesis focuses on the Greater Himalayan region, a vast mountain belt stretching across 0.89 million km2. Although potentially hundreds of outburst floods have occurred there since the beginning of the 20th century, data on these events is still scarce. Projections of cryospheric change, including glacier-mass wastage and permafrost degradation, will likely result in an overall increase of the water volume stored in meltwater lakes as well as the destabilisation of mountain slopes in the Greater Himalayan region. Thus, the potential for outburst floods to affect the increasingly more densely populated valleys of this mountain belt is also likely to increase in the future. A prime example of one of these valleys is the Pokhara valley in Nepal, which is drained by the Seti Khola, a river crossing one of the steepest topographic gradients in the Himalayas. This valley is also home to Nepal’s second largest, rapidly growing city, Pokhara, which currently has a population of more than half a million people – some of which live in informal settlements within the floodplain of the Seti Khola. Although there is ample evidence for past outburst floods along this river in recent and historic times, these events have hardly been quantified. The main motivation of my thesis is to address the data scarcity on past and potential future outburst floods in the Greater Himalayan region, both at a regional and at a local scale. For the former, I compiled an inventory of >3,000 moraine-dammed lakes, of which about 1% had a documented sudden failure in the past four decades. I used this data to test whether a number of predictors that have been widely applied in previous GLOF assessments are statistically relevant when estimating past GLOF susceptibility. For this, I set up four Bayesian multi-level logistic regression models, in which I explored the credibility of the predictors lake area, lake-area dynamics, lake elevation, parent-glacier-mass balance, and monsoonality. By using a hierarchical approach consisting of two levels, this probabilistic framework also allowed for spatial variability on GLOF susceptibility across the vast study area, which until now had not been considered in studies of this scale. The model results suggest that in the Nyainqentanglha and Eastern Himalayas – regions with strong negative glacier-mass balances – lakes have been more prone to release GLOFs than in regions with less negative or even stable glacier-mass balances. Similarly, larger lakes in larger catchments had, on average, a higher probability to have had a GLOF in the past four decades. Yet, monsoonality, lake elevation, and lake-area dynamics were more ambiguous. This challenges the credibility of a lake’s rapid growth in surface area as an indicator of a pending outburst; a metric that has been applied to regional GLOF assessments worldwide. At a local scale, my thesis aims to overcome data scarcity concerning the flow characteristics of the catastrophic May 2012 flood along the Seti Khola, which caused 72 fatalities, as well as potentially much larger predecessors, which deposited >1 km³ of sediment in the Pokhara valley between the 12th and 14th century CE. To reconstruct peak discharges, flow depths, and flow velocities of the 2012 flood, I mapped the extents of flood sediments from RapidEye satellite imagery and used these as a proxy for inundation limits. To constrain the latter for the Mediaeval events, I utilised outcrops of slackwater deposits in the fills of tributary valleys. Using steady-state hydrodynamic modelling for a wide range of plausible scenarios, from meteorological (1,000 m³ s-1) to cataclysmic outburst floods (600,000 m³ s-1), I assessed the likely initial discharges of the recent and the Mediaeval floods based on the lowest mismatch between sedimentary evidence and simulated flood limits. One-dimensional HEC-RAS simulations suggest, that the 2012 flood most likely had a peak discharge of 3,700 m³ s-1 in the upper Seti Khola and attenuated to 500 m³ s-1 when arriving in Pokhara’s suburbs some 15 km downstream. Simulations of flow in two-dimensions with orders of magnitude higher peak discharges in ANUGA show extensive backwater effects in the main tributary valleys. These backwater effects match the locations of slackwater deposits and, hence, attest for the flood character of Mediaeval sediment pulses. This thesis provides first quantitative proof for the hypothesis, that the latter were linked to earthquake-triggered outbursts of large former lakes in the headwaters of the Seti Khola – producing floods with peak discharges of >50,000 m³ s-1. Building on this improved understanding of past floods along the Seti Khola, my thesis continues with an analysis of the impacts of potential future outburst floods on land cover, including built-up areas and infrastructure mapped from high-resolution satellite and OpenStreetMap data. HEC-RAS simulations of ten flood scenarios, with peak discharges ranging from 1,000 to 10,000 m³ s-1, show that the relative inundation hazard is highest in Pokhara’s north-western suburbs. There, the potential effects of hydraulic ponding upstream of narrow gorges might locally sustain higher flow depths. Yet, along this reach, informal settlements and gravel mining activities are close to the active channel. By tracing the construction dynamics in two of these potentially affected informal settlements on multi-temporal RapidEye, PlanetScope, and Google Earth imagery, I found that exposure increased locally between three- to twentyfold in just over a decade (2008 to 2021). In conclusion, this thesis provides new quantitative insights into the past controls on the susceptibility of glacial lakes to sudden outburst at a regional scale and the flow dynamics of propagating flood waves released by past events at a local scale, which can aid future hazard assessments on transient scales in the Greater Himalayan region. My subsequent exploration of the impacts of potential future outburst floods to exposed infrastructure and (informal) settlements might provide valuable inputs to anticipatory assessments of multiple risks in the Pokhara valley. N2 - Hochgebirgsregionen stellen wertvolle Ökosystemdienstleistungen wie Nahrung, Wasser und Energieerzeugung für weltweit mehr als 900 Millionen Menschen bereit. Prognosen zufolge wird diese Zahl in den nächsten Jahrzehnten weiter rapide ansteigen, begleitet von einer zunehmenden Urbanisierung der in den Bergtälern lebenden Bevölkerung. Dieser anhaltende sozioökonomische Wandel äußert sich unter anderem in der Zunahme von Siedlungsflächen und dem Ausbau der Verkehrsinfrastruktur, während gleichzeitig ein erhöhter Energiebedarf den Bau von Wasserkraftwerken entlang von Hochgebirgsflüssen vorantreibt. Physikalische Prozesse, welche die Hochgebirgs-Kryosphäre beeinflussen, reagieren jedoch sehr empfindlich auf Klimaveränderungen. Die globale Erwärmung wird somit wahrscheinlich auch die Bedingungen in den Einzugsgebieten und Oberläufen dieser Hochgebirgsflüsse verändern. Eine mögliche Folge dieses Wandels ist eine Zunahme der Frequenz und Magnitude von natürlichen Dammbruchfluten (im Englischen outburst floods), welche hochdynamisch sind und potenziell große Mengen Wasser und Sedimente mit sich führen können. Plötzliche Ausbrüche von Seen, welche sich zuvor hinter natürlichen Dämmen aufgestaut haben, sind komplexe geomorphologische Prozesse und oft Teil einer mehrteiligen Gefahrenkaskade. Dammbruchfluten sind jedoch, im Gegensatz zu anderen Naturgefahren im Hochgebirge wie beispielsweise Erdrutsche oder Lawinen, sehr selten. Daher sind direkte Beobachtungen und Messdaten, welche z.B. die Art des Ausbruchs oder die hydraulischen Eigenschaften der sich stromabwärts ausbreitenden Strömung festhalten, nur sehr begrenzt vorhanden, was eine der größten Herausforderungen für die gegenwärtige Forschung an natürlichen Dammbruchfluten darstellt. Trotz der Seltenheit von Ausbrüchen von Gletscherseen (glacial lake outburst floods oder GLOFs) beziehungsweise von durch Erdrutschmassen aufgestauten Seen (landslide-dammed lake outburst floods oder LLOFs), ist dieser Fluttyp für eine hohe Anzahl an dokumentierten Opferzahlen und Schäden weltweit verantwortlich. Ein Großteil dieser Schäden wurde dabei nach Aufzeichnungen seit Beginn des 20. Jahrhunderts durch nur wenige Ereignisse verursacht. Natürliche Dammbruchfluten stellen somit eine ernsthafte Gefahr für weiter talabwärts gelegene Siedlungen und die Infrastruktur in den Hochgebirgsregionen der Welt dar. Die vorliegende Dissertation fokussiert sich räumlich auf den Himalaya und die angrenzenden Gebirgszüge – die sogenannte Großregion des Himalayas – welche sich über eine Fläche von 0.89 Millionen km² erstreckt. Obwohl sich in diesem Gebirgsgürtel seit Beginn des 20. Jahrhunderts möglicherweise Hunderte natürlicher Dammbruchfluten ereignet haben, liegen nur wenige Daten über derartige Ereignisse vor. Aktuelle Prognosen der Veränderungen der Kryosphäre in diesem Gebiet zeigen einen zunehmenden Verlust an Gletschermasse und das Abtauen von Permafrostböden, was wahrscheinlich wiederum zu einem allgemeinen Anstieg des in den Gletscherseen gespeicherten Wasservolumens sowie zur Destabilisierung der Berghänge in der Großregion des Himalayas führen wird. In Zukunft ist somit auch eine Zunahme des Potenzials für solche Überschwemmungen in den zunehmend dichter besiedelten Tälern dieses Gebirgsgürtels wahrscheinlich. Ein Paradebeispiel eines solchen gefährdeten Himalaya-Tals ist das Pokhara Tal in Nepal, welches vom Seti Khola („Khola“ heißt auf Nepalesisch Fluss) entwässert wird, dem Hochgebirgsfluss mit dem steilsten topographischen Gefälle im zentralen Himalaya. Das Pokhara Tal beherbergt die gleichnamige Stadt Pokhara, welche mit einer Einwohnerzahl von über 500.000 die zweitgrößte und am schnellsten wachsende Stadt Nepals darstellt. Ein Teil der Einwohner Pokharas lebt in informellen Siedlungen, welche sich oftmals direkt im Überschwemmungsgebiet des Seti Khola befinden. Trotz zahlreicher Hinweise auf frühere natürliche Dammbruchfluten entlang dieses Flusses aus jüngerer und historischer Zeit, wurden diese Ereignisse bisher kaum quantifiziert. Die Hauptmotivation meiner Dissertation besteht darin, den Mangel an Daten über vergangene und potenzielle zukünftige natürliche Dammbruchfluten in der Großregion des Himalayas zu überwinden, sowohl auf regionaler als auch auf lokaler Ebene. Zu diesem Zweck habe ich ein Inventar von mehr als 3.000 hinter Moränen aufgestauten Gletscherseen erstellt, von welchen etwa 1% in den letzten vier Jahrzehnten einen dokumentierten GLOF produziert haben. Auf dieser Datengrundlage testete ich, ob eine Reihe von Prädiktoren, die in bisherigen GLOF-Studien häufig verwendet wurden, statistisch relevant für die Abschätzung der Suszeptibilität von moränengedämmten Gletscherseen für GLOFs in der Vergangenheit sind. Zu diesem Zweck habe ich vier Bayesische hierarchische logistische Regressionsmodelle aufgestellt, mit welchen ich die Glaubwürdigkeit der Prädiktoren Seefläche, Seeflächendynamik, Seehöhe über dem Meeresspiegel, Gletschermassenbilanz und „Monsunalität“ (definiert als der Anteil des während der Sommermonate fallenden Niederschlages am Jahresniederschlag) untersuchen konnte. Die Anwendung eines hierarchischen Ansatzes mit zwei Ebenen ermöglichte dabei die Berücksichtigung einer möglichen räumlichen Variabilität der GLOF-Suszeptibilität im Untersuchungsgebiet, was in bisherigen Studien dieser Größenordnung bislang nicht berücksichtigt worden ist. Die Modellergebnisse deuten darauf hin, dass Gletscherseen im Nyainqentanglha und im östlichen Himalaya, also Regionen mit stark negativen Gletschermassenbilanzen, eine höhere Suszeptibilität für GLOFs hatten als Gletscherseen in Regionen mit weniger stark negativen oder stabilen Gletschermassenbilanzen. Größere Gletscherseen in größeren Einzugsgebieten zeigten durchschnittlich ebenfalls eine höhere Wahrscheinlichkeit für einen nachgewiesenen GLOF in den letzten vier Jahrzehnten. Ein Einfluss der Monsunalität, der Höhe des Sees über dem Meeresspiegel sowie der Dynamik der Seefläche waren jedoch uneindeutig in den Modellen. Dieses Ergebnis stellt die Gültigkeit eines raschen Seewachstums als Indikator eines bevorstehenden GLOFs, ein in regionalen GLOF-Studien häufig angewandter Prädiktor, in Frage. Auf lokaler Ebene kann meine Dissertation dabei helfen, die Datenknappheit bezüglich der Fließcharakteristika der katastrophalen Flut vom Mai 2012 mit 72 Opfern entlang des Seti Khola sowie deren potenziell viel größeren Vorgängerereignissen des 12. bis 14. Jahrhunderts, welche >1 km³ an Sedimenten deponierten, zu überwinden. Um Spitzenabflüsse, Fließtiefen und Fließgeschwindigkeiten der 2012 Flut zu rekonstruieren, habe ich die Erstreckung der Flutsedimente aus RapidEye-Satellitenbildern kartiert und diese als Proxy für die Grenzen der Überflutungsflächen verwendet. Um letztere auch für die mittelalterlichen Ereignisse einzuschätzen, nutzte ich die Aufschlüsse von Stauwasserablagerungen (slackwater deposits) in den Talverfüllungen der Tributäre des Seti Kholas. Mit Hilfe stationärer hydrodynamischer Modelle simulierte ich eine breite Palette plausibler Fließszenarien, von meteorologischen Fluten (1.000 m³ s-1) bis hin zu kataklystischen Ausbrüchen (600.000 m³ s-1). Die Abschätzung der wahrscheinlichen anfänglichen Spitzenabflüsse der rezenten und mittelalterlichen Überschwemmungen geschah dabei auf der Grundlage der geringsten räumlichen Diskrepanz zwischen den sedimentären Beweisen und den simulierten Überflutungsgrenzen. Meine eindimensionalen Flutsimulationen mit der Modellierungssoftware HEC-RAS ergaben, dass die Flut von 2012 höchstwahrscheinlich einen Spitzenabfluss von 3.700 m³ s-1 im oberen Abschnitt des Seti Khola aufwies, sich jedoch beim Erreichen der etwa 15 km flussabwärts gelegenen Randbereiche Pokharas bereits auf 500 m³ s-1 abgeschwächt hatte. Um Größenordnungen höhere zweidimensionale Flutsimulationen mit der Modellierungssoftware ANUGA zeigen extensive Rückstaueffekte in den Haupttributären. Die Grenzen dieser Rückstaueffekte stimmen mit den Vorkommen von Stauwasserablagerungen überein und belegen somit den fluviatilen Charakter der mittelalterlichen Sedimentationsereignisse. Diese Dissertation liefert somit den ersten quantitativen Beweis für die Hypothese, dass die mächtigen mittelalterlichen Sedimentablagerungen des Pokhara Tals durch von starken Erdbeben ausgelösten Ausbrüchen großer ehemaliger Gletscherseen im Oberlauf des Seti Khola zusammenhängen, welche Fluten mit Spitzenabflüssen von >50.000 m³ s-1 produzierten. Aufbauend auf diesem verbesserten Verständnis vergangener Fluten entlang des Seti Khola analysierte ich die Auswirkungen potenzieller zukünftiger natürlicher Dammbruchfluten auf die Landbedeckung des Pokhara Tals, einschließlich Siedlungsfläche und Infrastruktur, anhand von hochauflösenden Satelliten- und OpenStreetMap-Daten. Meine HEC-RAS-Simulationen von zehn Flutszenarien mit Spitzenabflüssen zwischen 1.000 und 10.000 m³ s-1 ergaben, dass die relative Überflutungsgefahr in den nordwestlichen Randbereichen Pokharas am höchsten ist. Dort kann eine hydraulische Aufstauung oberhalb von engen Schluchten zu lokal höheren Überflutungstiefen führen, was eine potenzielle Gefahr für die sich in diesen Flussabschnitten befindenden informellen Siedlungen und Kiesabbaulokalitäten darstellt. Meine Analyse der Bebauungsdynamik zweier potenziell betroffener informeller Siedlungen mithilfe von hochauflösenden, multi-temporalen RapidEye-, PlanetScope- und Google Earth-Satellitenbildern ergab, dass sich die Exposition in etwas mehr als einem Jahrzehnt (2008 bis 2021) lokal um das Drei- bis Zwanzigfache erhöhte. Die vorliegende Dissertation liefert neue quantitative Erkenntnisse einerseits über die Suszeptibilität von moränengedämmten Seen für plötzliche Gletscherseeausbrüche (GLOFs) auf regionaler Ebene und andererseits, auf lokaler Ebene, über die Strömungsdynamik der sich talabwärtsbewegenden Flutwellen vergangener Ereignisse. Meine anschließende Untersuchung der Auswirkungen potenzieller künftiger natürlicher Dammbruchfluten auf exponierte Infrastruktur und (informelle) Siedlungen kann einen wertvollen Beitrag zu zukünftigen Multi-Risikobewertung für das Pokhara Tal leisten. KW - outburst floods KW - Bayesian multi-level logistic regression KW - hydrodynamic modelling KW - Himalayas KW - GLOF KW - Nepal KW - flood hazard KW - Bayes'sche Mehrebenenregression KW - GLOF (Gletscherseeausbruchsflut) KW - Himalaya-Gebirge KW - Nepal KW - Flutgefährdung KW - hydrodynamische Modellierung KW - Dammbruchfluten Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569972 ER -