TY - JOUR A1 - Paredes, E. G. A1 - Boo, M. A1 - Amor, M. A1 - Bruguera, J. D. A1 - Döllner, Jürgen Roland Friedrich T1 - Extended hybrid meshing algorithm for multiresolution terrain models JF - International journal of geographical information science N2 - Hybrid terrains are a convenient approach for the representation of digital terrain models, integrating heterogeneous data from different sources. In this article, we present a general, efficient scheme for achieving interactive level-of-detail rendering of hybrid terrain models, without the need for a costly preprocessing or resampling of the original data. The presented method works with hybrid digital terrains combining regular grid data and local high-resolution triangulated irregular networks. Since grid and triangulated irregular network data may belong to different datasets, a straightforward combination of both geometries would lead to meshes with holes and overlapping triangles. Our method generates a single multiresolution model integrating the different parts in a coherent way, by performing an adaptive tessellation of the region between their boundaries. Hence, our solution is one of the few existing approaches for integrating different multiresolution algorithms within the same terrain model, achieving a simple interactive rendering of complex hybrid terrains. KW - 3D modeling KW - 3D visualization KW - geovisualization KW - triangulated irregular networks Y1 - 2012 U6 - https://doi.org/10.1080/13658816.2011.615317 SN - 1365-8816 VL - 26 IS - 5 SP - 771 EP - 793 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Buschmann, Stefan A1 - Trapp, Matthias A1 - Döllner, Jürgen Roland Friedrich T1 - Animated visualization of spatial-temporal trajectory data for air-traffic analysis JF - The Visual Computer N2 - With increasing numbers of flights worldwide and a continuing rise in airport traffic, air-traffic management is faced with a number of challenges. These include monitoring, reporting, planning, and problem analysis of past and current air traffic, e.g., to identify hotspots, minimize delays, or to optimize sector assignments to air-traffic controllers. To cope with these challenges, cyber worlds can be used for interactive visual analysis and analytical reasoning based on aircraft trajectory data. However, with growing data size and complexity, visualization requires high computational efficiency to process that data within real-time constraints. This paper presents a technique for real-time animated visualization of massive trajectory data. It enables (1) interactive spatio-temporal filtering, (2) generic mapping of trajectory attributes to geometric representations and appearance, and (3) real-time rendering within 3D virtual environments such as virtual 3D airport or 3D city models. Different visualization metaphors can be efficiently built upon this technique such as temporal focus+context, density maps, or overview+detail methods. As a general-purpose visualization technique, it can be applied to general 3D and 3+1D trajectory data, e.g., traffic movement data, geo-referenced networks, or spatio-temporal data, and it supports related visual analytics and data mining tasks within cyber worlds. KW - Spatio-temporal visualization KW - Trajectory visualization KW - 3D visualization KW - Visual analytics KW - Real-time rendering Y1 - 2016 U6 - https://doi.org/10.1007/s00371-015-1185-9 SN - 0178-2789 SN - 1432-2315 VL - 32 SP - 371 EP - 381 PB - Springer CY - New York ER -