TY - JOUR A1 - Hempel, Sabrina A1 - Adolphs, Julian A1 - Landwehr, Niels A1 - Janke, David A1 - Amon, Thomas T1 - How the selection of training data and modeling approach affects the estimation of ammonia emissions from a naturally ventilated dairy barn—classical statistics versus machine learning JF - Sustainability N2 - Environmental protection efforts can only be effective in the long term with a reliable quantification of pollutant gas emissions as a first step to mitigation. Measurement and analysis strategies must permit the accurate extrapolation of emission values. We systematically analyzed the added value of applying modern machine learning methods in the process of monitoring emissions from naturally ventilated livestock buildings to the atmosphere. We considered almost 40 weeks of hourly emission values from a naturally ventilated dairy cattle barn in Northern Germany. We compared model predictions using 27 different scenarios of temporal sampling, multiple measures of model accuracy, and eight different regression approaches. The error of the predicted emission values with the tested measurement protocols was, on average, well below 20%. The sensitivity of the prediction to the selected training dataset was worse for the ordinary multilinear regression. Gradient boosting and random forests provided the most accurate and robust emission value predictions, accompanied by the second-smallest model errors. Most of the highly ranked scenarios involved six measurement periods, while the scenario with the best overall performance was: One measurement period in summer and three in the transition periods, each lasting for 14 days. KW - livestock KW - air pollutant KW - emission modeling KW - emission inventory KW - regression KW - artificial neural network KW - random forest KW - gradient boosting KW - Gaussian process KW - training sample Y1 - 2020 U6 - https://doi.org/10.3390/su12031030 SN - 2071-1050 VL - 12 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hempel, Sabrina A1 - Adolphs, Julian A1 - Landwehr, Niels A1 - Willink, Dilya A1 - Janke, David A1 - Amon, Thomas T1 - Supervised machine learning to assess methane emissions of a dairy building with natural ventilation JF - Applied Sciences N2 - A reliable quantification of greenhouse gas emissions is a basis for the development of adequate mitigation measures. Protocols for emission measurements and data analysis approaches to extrapolate to accurate annual emission values are a substantial prerequisite in this context. We systematically analyzed the benefit of supervised machine learning methods to project methane emissions from a naturally ventilated cattle building with a concrete solid floor and manure scraper located in Northern Germany. We took into account approximately 40 weeks of hourly emission measurements and compared model predictions using eight regression approaches, 27 different sampling scenarios and four measures of model accuracy. Data normalization was applied based on median and quartile range. A correlation analysis was performed to evaluate the influence of individual features. This indicated only a very weak linear relation between the methane emission and features that are typically used to predict methane emission values of naturally ventilated barns. It further highlighted the added value of including day-time and squared ambient temperature as features. The error of the predicted emission values was in general below 10%. The results from Gaussian processes, ordinary multilinear regression and neural networks were least robust. More robust results were obtained with multilinear regression with regularization, support vector machines and particularly the ensemble methods gradient boosting and random forest. The latter had the added value to be rather insensitive against the normalization procedure. In the case of multilinear regression, also the removal of not significantly linearly related variables (i.e., keeping only the day-time component) led to robust modeling results. We concluded that measurement protocols with 7 days and six measurement periods can be considered sufficient to model methane emissions from the dairy barn with solid floor with manure scraper, particularly when periods are distributed over the year with a preference for transition periods. Features should be normalized according to median and quartile range and must be carefully selected depending on the modeling approach. KW - greenhouse gas KW - on-farm evaluation KW - emission factor KW - regression KW - ensemble methods KW - gradient boosting KW - random forest KW - neural networks KW - support vector machines Y1 - 2020 U6 - https://doi.org/10.3390/app10196938 SN - 2076-3417 VL - 10 IS - 19 PB - MDPI CY - Basel ER - TY - THES A1 - Smirnov, Artem T1 - Understanding the dynamics of the near-earth space environment utilizing long-term satellite observations T1 - Verständnis der Dynamik der erdnahen Weltraumumgebung mit Hilfe von Langzeit-Satellitenbeobachtungen N2 - The near-Earth space environment is a highly complex system comprised of several regions and particle populations hazardous to satellite operations. The trapped particles in the radiation belts and ring current can cause significant damage to satellites during space weather events, due to deep dielectric and surface charging. Closer to Earth is another important region, the ionosphere, which delays the propagation of radio signals and can adversely affect navigation and positioning. In response to fluctuations in solar and geomagnetic activity, both the inner-magnetospheric and ionospheric populations can undergo drastic and sudden changes within minutes to hours, which creates a challenge for predicting their behavior. Given the increasing reliance of our society on satellite technology, improving our understanding and modeling of these populations is a matter of paramount importance. In recent years, numerous spacecraft have been launched to study the dynamics of particle populations in the near-Earth space, transforming it into a data-rich environment. To extract valuable insights from the abundance of available observations, it is crucial to employ advanced modeling techniques, and machine learning methods are among the most powerful approaches available. This dissertation employs long-term satellite observations to analyze the processes that drive particle dynamics, and builds interdisciplinary links between space physics and machine learning by developing new state-of-the-art models of the inner-magnetospheric and ionospheric particle dynamics. The first aim of this thesis is to investigate the behavior of electrons in Earth's radiation belts and ring current. Using ~18 years of electron flux observations from the Global Positioning System (GPS), we developed the first machine learning model of hundreds-of-keV electron flux at Medium Earth Orbit (MEO) that is driven solely by solar wind and geomagnetic indices and does not require auxiliary flux measurements as inputs. We then proceeded to analyze the directional distributions of electrons, and for the first time, used Fourier sine series to fit electron pitch angle distributions (PADs) in Earth's inner magnetosphere. We performed a superposed epoch analysis of 129 geomagnetic storms during the Van Allen Probes era and demonstrated that electron PADs have a strong energy-dependent response to geomagnetic activity. Additionally, we showed that the solar wind dynamic pressure could be used as a good predictor of the PAD dynamics. Using the observed dependencies, we created the first PAD model with a continuous dependence on L, magnetic local time (MLT) and activity, and developed two techniques to reconstruct near-equatorial electron flux observations from low-PA data using this model. The second objective of this thesis is to develop a novel model of the topside ionosphere. To achieve this goal, we collected observations from five of the most widely used ionospheric missions and intercalibrated these data sets. This allowed us to use these data jointly for model development, validation, and comparison with other existing empirical models. We demonstrated, for the first time, that ion density observations by Swarm Langmuir Probes exhibit overestimation (up to ~40-50%) at low and mid-latitudes on the night side, and suggested that the influence of light ions could be a potential cause of this overestimation. To develop the topside model, we used 19 years of radio occultation (RO) electron density profiles, which were fitted with a Chapman function with a linear dependence of scale height on altitude. This approximation yields 4 parameters, namely the peak density and height of the F2-layer and the slope and intercept of the linear scale height trend, which were modeled using feedforward neural networks (NNs). The model was extensively validated against both RO and in-situ observations and was found to outperform the International Reference Ionosphere (IRI) model by up to an order of magnitude. Our analysis showed that the most substantial deviations of the IRI model from the data occur at altitudes of 100-200 km above the F2-layer peak. The developed NN-based ionospheric model reproduces the effects of various physical mechanisms observed in the topside ionosphere and provides highly accurate electron density predictions. This dissertation provides an extensive study of geospace dynamics, and the main results of this work contribute to the improvement of models of plasma populations in the near-Earth space environment. N2 - Die erdnahe Weltraumumgebung ist ein hochkomplexes System, das aus mehreren Regionen und Partikelpopulationen besteht, die für den Satellitenbetrieb gefährlich sind. Die in den Strahlungsgürteln und dem Ringstrom gefangenen Teilchen können bei Weltraumwetterereignissen aufgrund der tiefen dielektrischen und oberflächlichen Aufladung erhebliche Schäden an Satelliten verursachen. Näher an der Erde liegt eine weitere wichtige Region, die Ionosphäre, die die Ausbreitung von Funksignalen verzögert und die Navigation und Positionsbestimmung beeinträchtigen kann. Als Reaktion auf Fluktuationen der solaren und geomagnetischen Aktivität können sowohl die Populationen der inneren Magnetosphäre als auch der Ionosphäre innerhalb von Minuten bis Stunden drastische und plötzliche Veränderungen erfahren, was eine Herausforderung für die Vorhersage ihres Verhaltens darstellt. Angesichts der zunehmenden Abhängigkeit unserer Gesellschaft von der Satellitentechnologie ist ein besseres Verständnis und eine bessere Modellierung dieser Populationen von größter Bedeutung. In den letzten Jahren wurden zahlreiche Raumsonden gestartet, um die Dynamik von Partikelpopulationen im erdnahen Weltraum zu untersuchen, was diesen in eine datenreiche Umgebung verwandelt hat. Um aus der Fülle der verfügbaren Beobachtungen wertvolle Erkenntnisse zu gewinnen, ist der Einsatz fortschrittlicher Modellierungstechniken unabdingbar, und Methoden des maschinellen Lernens gehören zu den leistungsfähigsten verfügbaren Ansätzen. Diese Dissertation nutzt langfristige Satellitenbeobachtungen, um die Prozesse zu analysieren, die die Teilchendynamik antreiben, und schafft interdisziplinäre Verbindungen zwischen Weltraumphysik und maschinellem Lernen, indem sie neue hochmoderne Modelle der innermagnetosphärischen und ionosphärischen Teilchendynamik entwickelt. Das erste Ziel dieser Arbeit ist es, das Verhalten von Elektronen im Strahlungsgürtel und Ringstrom der Erde zu untersuchen. Unter Verwendung von ~18 Jahren Elektronenflussbeobachtungen des Global Positioning System (GPS) haben wir das erste maschinelle Lernmodell des Elektronenflusses im mittleren Erdorbit (MEO) entwickelt, das ausschließlich durch Sonnenwind und geomagnetische Indizes gesteuert wird und keine zusätzlichen Flussmessungen als Eingaben benötigt. Anschließend analysierten wir die Richtungsverteilungen der Elektronen und verwendeten zum ersten Mal Fourier-Sinus-Reihen, um die Elektronen-Stellwinkelverteilungen (PADs) in der inneren Magnetosphäre der Erde zu bestimmen. Wir führten eine epochenübergreifende Analyse von 129 geomagnetischen Stürmen während der Van-Allen-Sonden-Ära durch und zeigten, dass die Elektronen-PADs eine starke energieabhängige Reaktion auf die geomagnetische Aktivität haben. Außerdem konnten wir zeigen, dass der dynamische Druck des Sonnenwindes als guter Prädiktor für die PAD-Dynamik verwendet werden kann. Anhand der beobachteten Abhängigkeiten haben wir das erste PAD-Modell mit einer kontinuierlichen Abhängigkeit von L, der magnetischen Ortszeit (MLT) und der Aktivität erstellt und zwei Techniken entwickelt, um die Beobachtungen des äquatornahen Elektronenflusses aus Daten mit niedrigem Luftdruck mit Hilfe dieses Modells zu rekonstruieren. Das zweite Ziel dieser Arbeit ist die Entwicklung eines neuen Modells der Topside-Ionosphäre. Um dieses Ziel zu erreichen, haben wir Beobachtungen von fünf der meistgenutzten Ionosphärenmissionen gesammelt und diese Datensätze interkalibriert. So konnten wir diese Daten gemeinsam für die Modellentwicklung, die Validierung und den Vergleich mit anderen bestehenden empirischen Modellen nutzen. Wir haben zum ersten Mal gezeigt, dass die Ionendichtebeobachtungen von Swarm-Langmuir-Sonden in niedrigen und mittleren Breiten auf der Nachtseite eine Überschätzung (bis zu ~40-50%) aufweisen, und haben vorgeschlagen, dass der Einfluss leichter Ionen eine mögliche Ursache für diese Überschätzung sein könnte. Zur Entwicklung des Oberseitenmodells wurden 19 Jahre lang Elektronendichteprofile aus der Radio-Okkultation (RO) verwendet, die mit einer Chapman-Funktion mit einer linearen Abhängigkeit der Skalenhöhe von der Höhe angepasst wurden. Aus dieser Näherung ergeben sich 4 Parameter, nämlich die Spitzendichte und die Höhe der F2-Schicht sowie die Steigung und der Achsenabschnitt des linearen Trends der Skalenhöhe, die mit Hilfe von neuronalen Feedforward-Netzwerken (NN) modelliert wurden. Das Modell wurde sowohl anhand von RO- als auch von In-situ-Beobachtungen umfassend validiert und übertrifft das Modell der Internationalen Referenz-Ionosphäre (IRI). Unsere Analyse zeigte, dass die größten Abweichungen des IRI-Modells von den Daten in Höhen von 100-200 km über der F2-Schichtspitze auftreten. Das entwickelte NN-basierte Ionosphärenmodell reproduziert die Auswirkungen verschiedener physikalischer Mechanismen, die in der Topside-Ionosphäre beobachtet werden, und liefert sehr genaue Vorhersagen der Elektronendichte. Diese Dissertation bietet eine umfassende Untersuchung der Dynamik in der Geosphäre, und die wichtigsten Ergebnisse dieser Arbeit tragen zur Verbesserung der Modelle von Plasmapopulationen in der erdnahen Weltraumumgebung bei. KW - Ionosphere KW - radiation belts KW - ring current KW - space physics KW - empirical modeling KW - machine learning KW - gradient boosting KW - neural networks KW - Ionosphäre KW - empirische Modellierung KW - Gradient Boosting KW - maschinelles Lernen KW - neuronale Netze KW - Strahlungsgürtel KW - Ringstrom KW - Weltraumphysik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-613711 ER -