TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Saphiannikova, Marina A1 - Santer, Svetlana T1 - Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns JF - Applied physics letters N2 - In this paper, we report on differences in the response of photosensitive azobenzene containing films upon irradiation with the intensity or polarization interference patterns. Two materials are studied differing in the molecular weight: an azobenzene-containing polymer and a molecular glass formed from a much smaller molecule consisting of three connected azobenzene units. Topography changes occurring along with the changes in irradiation conditions are recorded using a homemade set-up combining an optical part for generation and shaping of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. In this way, we could reveal the unique behavior of photosensitive materials during the first few minutes of irradiation: the change in topography is initially driven by an increase in the azobenzene free volume along with the transcis isomerization, followed by the mass transport finally resulting in the surface relief grating. This study demonstrates the great potential of our setup to experimentally highlight puzzling processes governing the formation of surface relief gratings. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4891615 SN - 0003-6951 SN - 1077-3118 VL - 105 IS - 5 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Saphiannikova, Marina A1 - Lomadze, Nino A1 - Goldenberg, Leonid M. A1 - Santer, Svetlana T1 - Structuring of photosensitive material below diffraction limit using far field irradiation JF - Applied physics : A, Materials science & processing N2 - In this paper, we report on in-situ atomic force microscopy (AFM) studies of topographical changes in azobenzene-containing photosensitive polymer films that are irradiated with light interference patterns. We have developed an experimental setup consisting of an AFM combined with two-beam interferometry that permits us to switch between different polarization states of the two interfering beams while scanning the illuminated area of the polymer film, acquiring corresponding changes in topography in-situ. This way, we are able to analyze how the change in topography is related to the variation of the electrical field vector within the interference pattern. It is for the first time that with a rather simple experimental approach a rigorous assignment can be achieved. By performing in-situ measurements we found that for a certain polarization combination of two interfering beams [namely for the SP (a dagger center dot, a dagger") polarization pattern] the topography forms surface relief grating with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We believe that this relatively simple method could be extremely valuable to, for instance, produce structural features below the diffraction limit at high-throughput, and this could significantly contribute to the search of new fabrication strategies in electronics and photonics industry. Y1 - 2013 U6 - https://doi.org/10.1007/s00339-013-7945-3 SN - 0947-8396 SN - 1432-0630 VL - 113 IS - 2 SP - 263 EP - 272 PB - Springer CY - New York ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Santer, Svetlana T1 - In-situ atomic force microscopy study of the mechanism of surface relief grating formation in photosensitive polymer films JF - Journal of applied physics N2 - When photosensitive azobenzene-containing polymer films are irradiated with light interference patterns, topographic variations in the film develop that follow the local distribution of the electric field vector. The exact correspondence of e.g., the vector orientation in relation to the presence of local topographic minima or maxima is in general difficult to determine. Here, we report on a systematic procedure how this can be accomplished. For this, we devise a new set-up combining an atomic force microscope and two-beam interferometry. With this set-up, it is possible to track the topography change in-situ, while at the same time changing polarization and phase of the impinging interference pattern. This is the first time that an absolute correspondence between the local distribution of electric field vectors and the local topography of the relief grating could be established exhaustively. Our setup does not require a complex mathematical post-processing and its simplicity renders it interesting for characterizing photosensitive polymer films in general. Y1 - 2013 U6 - https://doi.org/10.1063/1.4809640 SN - 0021-8979 SN - 1089-7550 VL - 113 IS - 22 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Yadavalli, Nataraja Sekhar A1 - Loebner, Sarah A1 - Papke, Thomas A1 - Sava, Elena A1 - Hurduc, Nicolae A1 - Santer, Svetlana T1 - A comparative study of photoinduced deformation in azobenzene containing polymer films T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In this paper two groups supporting different views on the mechanism of light induced polymer deformation argue about the respective underlying theoretical conceptions, in order to bring this interesting debate to the attention of the scientific community. The group of Prof. Nicolae Hurduc supports the model claiming that the cyclic isomerization of azobenzenes may cause an athermal transition of the glassy azobenzene containing polymer into a fluid state, the so-called photo-fluidization concept. This concept is quite convenient for an intuitive understanding of the deformation process as an anisotropic flow of the polymer material. The group of Prof. Svetlana Santer supports the re-orientational model where the mass-transport of the polymer material accomplished during polymer deformation is stated to be generated by the light-induced re-orientation of the azobenzene side chains and as a consequence of the polymer backbone that in turn results in local mechanical stress, which is enough to irreversibly deform an azobenzene containing material even in the glassy state. For the debate we chose three polymers differing in the glass transition temperature, 32 °C, 87 °C and 95 °C, representing extreme cases of flexible and rigid materials. Polymer film deformation occurring during irradiation with different interference patterns is recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. We also demonstrated the unique behaviour of azobenzene containing polymeric films to switch the topography in situ and reversibly by changing the irradiation conditions. We discuss the results of reversible deformation of three polymers induced by irradiation with intensity (IIP) and polarization (PIP) interference patterns, and the light of homogeneous intensity in terms of two approaches: the re-orientational and the photo-fluidization concepts. Both agree in that the formation of opto-mechanically induced stresses is a necessary prerequisite for the process of deformation. Using this argument, the deformation process can be characterized either as a flow or mass transport. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 458 KW - light-induced deformation KW - surface-relief gratings KW - optical near-field KW - chromophore orientations KW - atomic-force; nano-objects KW - brushes KW - raman KW - elastomers KW - microscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413510 SN - 1866-8372 IS - 458 ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Loebner, Sarah A1 - Papke, Thomas A1 - Sava, Elena A1 - Hurduc, Nicolae A1 - Santer, Svetlana T1 - A comparative study of photoinduced deformation in azobenzene containing polymer films JF - Soft matter N2 - In this paper two groups supporting different views on the mechanism of light induced polymer deformation argue about the respective underlying theoretical conceptions, in order to bring this interesting debate to the attention of the scientific community. The group of Prof. Nicolae Hurduc supports the model claiming that the cyclic isomerization of azobenzenes may cause an athermal transition of the glassy azobenzene containing polymer into a fluid state, the so-called photo-fluidization concept. This concept is quite convenient for an intuitive understanding of the deformation process as an anisotropic flow of the polymer material. The group of Prof. Svetlana Santer supports the re-orientational model where the mass-transport of the polymer material accomplished during polymer deformation is stated to be generated by the light-induced re-orientation of the azobenzene side chains and as a consequence of the polymer backbone that in turn results in local mechanical stress, which is enough to irreversibly deform an azobenzene containing material even in the glassy state. For the debate we chose three polymers differing in the glass transition temperature, 32 degrees C, 87 degrees C and 95 degrees C, representing extreme cases of flexible and rigid materials. Polymer film deformation occurring during irradiation with different interference patterns is recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. We also demonstrated the unique behaviour of azobenzene containing polymeric films to switch the topography in situ and reversibly by changing the irradiation conditions. We discuss the results of reversible deformation of three polymers induced by irradiation with intensity (IIP) and polarization (PIP) interference patterns, and the light of homogeneous intensity in terms of two approaches: the re-orientational and the photo-fluidization concepts. Both agree in that the formation of opto-mechanically induced stresses is a necessary prerequisite for the process of deformation. Using this argument, the deformation process can be characterized either as a flow or mass transport. Y1 - 2016 U6 - https://doi.org/10.1039/c6sm00029k SN - 1744-683X SN - 1744-6848 VL - 12 SP - 2593 EP - 2603 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Linde, Felix A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Soft matter beats hard matter - rupturing of thin metallic films induced by mass transport in photosensitive polymer films JF - ACS applied materials & interfaces N2 - The interface between thin films of metal and polymer materials play a significant role in modern flexible microelectronics viz., metal contacts on polymer substrates, printed electronics and prosthetic devices. The major emphasis in metal polymer interface is on studying how the externally applied stress in the polymer substrate leads to the deformation and cracks in metal film and vice versa. Usually, the deformation process involves strains varying over large lateral dimensions because of excessive stress at local imperfections. Here we show that the seemingly random phenomena at macroscopic scales can be rendered rather controllable at submicrometer length scales. Recently, we have created a metal polymer interface system with strains varying over periods of several hundred nanometers. This was achieved by exploiting the formation of surface relief grating (SRG) within the azobenzene containing photosensitive polymer film upon irradiation with light interference pattern. Up to a thickness of 60 nm, the adsorbed metal film adapts neatly to the forming relief, until it ultimately ruptures into an array of stripes by formation of highly regular and uniform cracks along the maxima and minima of the polymer topography. This surprising phenomenon has far-reaching implications. This is the first time a direct probe is available to estimate the forces emerging in SRG formation in glassy polymers. Furthermore, crack formation in thin metal films can be studied literally in slow motion, which could lead to substantial improvements in the design process of flexible electronics. Finally, cracks are produced uniformly and at high density, contrary to common sense. This could offer new strategies for precise nanofabrication procedures mechanical in character. KW - metal/polymer interface KW - rupturing of metal film KW - forces generated during surface relief grating formation KW - in situ atomic force microscopy KW - azobenzene KW - two beam interferometry Y1 - 2013 U6 - https://doi.org/10.1021/am4006132w SN - 1944-8244 VL - 5 IS - 16 SP - 7743 EP - 7747 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - König, Tobias A1 - Santer, Svetlana T1 - Selective mass transport of azobenzene-containing photosensitive films towards or away from the light intensity JF - Journal of the Society for Information Display N2 - Here, we report on two photosensitive amorphous polymers showing opposite behavior upon exposure to illumination. The first polymer (PAZO) consists of linear backbone to which azobenzene-containing side chains are covalently attached, while in the second polymer (azo-PEI), the azobenzene side chains are attached ionically to a polyelectrolyte backbone. When irradiated through a mask, the PAZO goes away from the intensity maxima, leaving behind topography trenches, while the direction of the mass transport of the azo-PEI polymer points towards the intensity maxima. This kind of behavior has been reported only for certain liquid crystalline polymers that exhibit in-phase reaction on illumination, that is, topography maxima coincides with the intensity maxima. Furthermore, flat nanocrystals placed on top of azo-PEI film was found to be moved together with the mass transport of the underlying polymer film as visualized using in situ atomic force microscopy (AFM) measurements. It was also demonstrated that the two polymer films respond differently on irradiation with the polarization and intensity interference patterns (IPs). To record the kinetic of the surface relief grating formation within two polymers during irradiation with different IPs, we utilized a homemade setup combining the optical part for the generation of IP and AFM. A possible mechanism explaining different responses on the irradiation of amorphous polymers is discussed in the frame of a theoretical model proposed by Saphiannikova et al. (J. Phys. Chem. B 113, 5032-5045 (2009)). KW - azobenzene KW - surface relief grating KW - light-induced mass transport KW - interference pattern KW - nano-object motion Y1 - 2015 U6 - https://doi.org/10.1002/jsid.306 SN - 1071-0922 SN - 1938-3657 VL - 23 IS - 4 SP - 154 EP - 162 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Korolkov, Denis A1 - Moulin, Jean-Francois A1 - Krutyeva, Margarita A1 - Santer, Svetlana T1 - Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above JF - ACS applied materials & interfaces N2 - Azo-modified photosensitive polymers offer the interesting possibility to reshape bulk polymers and thin films by UV-irradiation while being in the solid glassy state. The polymer undergoes considerable mass transport under irradiation with a light interference pattern resulting in the formation of surface relief grating (SRG). The forces inscribing this SRG pattern into a thin film are hard to assess experimentally directly. In the current study, we are proposing a method to probe opto-mechanical stresses within polymer films by characterizing the mechanical response of thin metal films (10 nm) deposited on the photosensitive polymer. During irradiation, the metal film not only deforms along with the SRG formation but ruptures in a regular and complex manner. The morphology of the cracks differs strongly depending on the electrical field distribution in the interference pattern, even when the magnitude and the kinetics of the strain are kept constant. This implies a complex local distribution of the opto-mechanical stress along the topography grating. In addition, the neutron reflectivity measurements of the metal/polymer interface indicate the penetration of a metal layer within the polymer, resulting in a formation of a bonding layer that confirms the transduction of light-induced stresses in the polymer layer to a metal film. KW - surface relief grating KW - opto-mechanical stresses KW - bonding layer at the metal/polymer interface KW - rupturing of metal film KW - metal/multilayered graphene/polymer interfaces KW - azobenzene Y1 - 2014 U6 - https://doi.org/10.1021/am501870t SN - 1944-8244 VL - 6 IS - 14 SP - 11333 EP - 11340 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Papke, Thomas A1 - Yadavalli, Nataraja Sekhar A1 - Henkel, Carsten A1 - Santer, Svetlana T1 - Mapping a plasmonic hologram with photosensitive polymer films: standing versus propagating waves JF - ACS applied materials & interfaces N2 - We use a photosensitive layer containing azobenzene moieties to map near-field intensity patterns in the vicinity of nanogrids fabricated within a thin silver layer. It is known that azobenzene containing films deform permanently during irradiation, following the pattern of the field intensity. The photosensitive material reacts only to stationary waves whose intensity patterns do not change in time. In this study, we have found a periodic deformation above the silver film outside the nanostructure, even if the latter consists of just one groove. This is in contradiction to the widely accepted viewpoint that propagating surface plasmon modes dominate outside nanogrids. We explain our observation based on an electromagnetic hologram formed by the constructive interference between a propagating surface plasmon wave and the incident light. This hologram contains a stationary intensity and polarization grating that even appears in the absence of the polymer layer. KW - propagating surface plasmons KW - nanostructured metal surface KW - azobenzene containing photosensitive material KW - surface relief grating Y1 - 2014 U6 - https://doi.org/10.1021/am503501y SN - 1944-8244 VL - 6 IS - 16 SP - 14174 EP - 14180 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Loebner, Sarah A1 - Jelken, Joachim A1 - Yadavalli, Nataraja Sekhar A1 - Sava, Elena A1 - Hurduc, Nicolae A1 - Santer, Svetlana T1 - Motion of adsorbed nano-particles on azobenzene containing polymer films N2 - We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 352 KW - motion of adsorbed nano-particles KW - azobenzene containing polymer films KW - fluctuating surfaces Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400423 ER -