TY - JOUR A1 - Xue, Zhike A1 - Yan, Xiaoli A1 - Cheng, Xin A1 - Yang, Liheng A1 - Su, Yingna A1 - Kliem, Bernhard A1 - Zhang, Jun A1 - Liu, Zhong A1 - Bi, Yi A1 - Xiang, Yongyuan A1 - Yang, Kai A1 - Zhao, Li T1 - Observing the release of twist by magnetic reconnection in a solar filament eruption JF - Nature Communications N2 - Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist. Y1 - 2016 U6 - https://doi.org/10.1038/ncomms11837 SN - 2041-1723 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Wang, Yi-Ming A1 - Muglach, Karin A1 - Kliem, Bernhard T1 - Endpoint brightenings in erupting filaments N2 - Two well known phenomena associated with erupting filaments are the transient coronal holes that form on each side of the filament channel and the bright post-event arcade with its expanding double row of footpoints. Here we focus on a frequently overlooked signature of filament eruptions: the spike- or fan-shaped brightenings that appear to mark the far endpoints of the filament. From a sample of non-active-region filament events observed with the Extreme- Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory, we find that these brightenings usually occur near the outer edges of the transient holes, in contrast to the post-event arcades, which define their inner edges. The endpoints are often multiple and are rooted in and around strong network flux well outside the filament channel, a result that is consistent with the axial field of the filament being much stronger than the photospheric field inside the channel. The extreme ultraviolet brightenings, which are most intense at the time of maximum outward acceleration of the filament, can be used to determine unambiguously the direction of the axial field component from longitudinal magnetograms. Their location near the outer boundary of the transient holes suggests that we are observing the footprints of the current sheet formed at the leading edge of the erupting filament, as distinct from the vertical current sheet behind the filament which is the source of the post-event arcade. Y1 - 2009 UR - http://iopscience.iop.org/0004-637X/ U6 - https://doi.org/10.1088/0004-637x/699/1/133 SN - 0004-637X ER - TY - JOUR A1 - Veronig, Astrid M. A1 - Podladchikova, Tatiana A1 - Dissauer, Karin A1 - Temmer, Manuela A1 - Seaton, Daniel B. A1 - Long, David A1 - Guo, Jingnan A1 - Vrsnak, Bojan A1 - Harra, Louise A1 - Kliem, Bernhard T1 - Genesis and Impulsive Evolution of the 2017 September 10 Coronal Mass Ejection JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The X8.2 event of 2017 September 10 provides unique observations to study the genesis, magnetic morphology, and impulsive dynamics of a very fast coronal mass ejection (CME). Combining GOES-16/SUVI and SDO/AIA EUV imagery, we identify a hot (T approximate to 10-15 MK) bright rim around a quickly expanding cavity, embedded inside a much larger CME shell (T approximate to 1-2 MK). The CME shell develops from a dense set of large AR loops ( greater than or similar to 0.5R(s)) and seamlessly evolves into the CME front observed in LASCO C2. The strong lateral overexpansion of the CME shell acts as a piston initiating the fast EUV wave. The hot cavity rim is demonstrated to be a manifestation of the dominantly poloidal flux and frozen-in plasma added to the rising flux rope by magnetic reconnection in the current sheet beneath. The same structure is later observed as the core of the white-light CME, challenging the traditional interpretation of the CME three-part morphology. The large amount of added magnetic flux suggested by these observations explains the extreme accelerations of the radial and lateral expansion of the CME shell and cavity, all reaching values of 5-10 km s(-2). The acceleration peaks occur simultaneously with the first RHESSI 100-300 keV hard X-ray burst of the associated flare, further underlining the importance of the reconnection process for the impulsive CME evolution. Finally, the much higher radial propagation speed of the flux rope in relation to the CME shell causes a distinct deformation of the white-light CME front and shock. KW - Sun: activity KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: flares Y1 - 2018 U6 - https://doi.org/10.3847/1538-4357/aaeac5 SN - 0004-637X SN - 1538-4357 VL - 868 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - van Driel-Gesztelyi, L. A1 - Baker, Daniel N. A1 - Toeroek, T. A1 - Pariat, E. A1 - Green, L. M. A1 - Williams, D. R. A1 - Carlyle, J. A1 - Valori, G. A1 - Demoulin, Pascal A1 - Kliem, Bernhard A1 - Long, D. M. A1 - Matthews, S. A. A1 - Malherbe, J. -M. T1 - Coronal magnetic reconnection driven by CME expansion-the 2011 June 7 event JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent active regions during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube at the interface between the CME and the neighboring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is redirected toward remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (1010 cm(-3)) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale reconfiguration of the coronal magnetic field. KW - magnetic reconnection KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: magnetic fields KW - Sun: UV radiation Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/788/1/85 SN - 0004-637X SN - 1538-4357 VL - 788 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Valori, Gherardo A1 - Kliem, Bernhard A1 - Török, Tibor A1 - Titov, Viacheslav S. T1 - Testing magnetofrictional extrapolation with the Titov-Demoulin model of solar active regions N2 - We examine the nonlinear magnetofrictional extrapolation scheme using the solar active region model by Titov and Demoulin as test field. This model consists of an arched, line-tied current channel held in force-free equilibrium by the potential field of a bipolar flux distribution in the bottom boundary. A modified version with a parabolic current density profile is employed here. We find that the equilibrium is reconstructed with very high accuracy in a representative range of parameter space, using only the vector field in the bottom boundary as input. Structural features formed in the interface between the flux rope and the surrounding arcade - "hyperbolic flux tube" and "bald patch separatrix surface" - are reliably reproduced, as are the flux rope twist and the energy and helicity of the configuration. This demonstrates that force-free fields containing these basic structural elements of solar active regions can be obtained by extrapolation. The influence of the chosen initial condition on the accuracy of reconstruction is also addressed, confirming that the initial field that best matches the external potential field of the model quite naturally leads to the best reconstruction. Extrapolating the magnetogram of a Titov-Demoulin equilibrium in the unstable range of parameter space yields a sequence of two opposing evolutionary phases, which clearly indicate the unstable nature of the configuration: a partial buildup of the flux rope with rising free energy is followed by destruction of the rope, losing most of the free energy. Y1 - 2010 UR - http://www.aanda.org/ U6 - https://doi.org/10.1051/0004-6361/201014416 SN - 0004-6361 ER - TY - JOUR A1 - Török, Tibor A1 - Berger, Mitch A. A1 - Kliem, Bernhard T1 - The writhe of helical structures in the solar corona N2 - Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope geometry, it consists of twist and writhe helicity. Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates to the writhe, which fraction of helicity is contained in writhe, and how much helicity is exchanged between twist and writhe when they erupt. Aims. Here we perform a quantitative investigation of these questions relevant for coronal flux ropes. Methods. The decomposition of the writhe of a curve into local and nonlocal components greatly facilitates its computation. We use it to study the relation between writhe and projected S shape of helical curves and to measure writhe and twist in numerical simulations of flux rope instabilities. The results are discussed with regard to filament eruptions and coronal mass ejections (CMEs). Results. (1) We demonstrate that the relation between writhe and projected S shape is not unique in principle, but that the ambiguity does not affect low- lying structures, thus supporting the established empirical rule which associates stable forward (reverse) S shaped structures low in the corona with positive (negative) helicity. (2) Kink-unstable erupting flux ropes are found to transform a far smaller fraction of their twist helicity into writhe helicity than often assumed. (3) Confined flux rope eruptions tend to show stronger writhe at low heights than ejective eruptions (CMEs). This argues against suggestions that the writhing facilitates the rise of the rope through the overlying field. (4) Erupting filaments which are S shaped already before the eruption and keep the sign of their axis writhe (which is expected if field of one chirality dominates the source volume of the eruption), must reverse their S shape in the course of the rise. Implications for the occurrence of the helical kink instability in such events are discussed. (5) The writhe of rising loops can easily be estimated from the angle of rotation about the direction of ascent, once the apex height exceeds the footpoint separation significantly. Conclusions. Writhe can straightforwardly be computed for numerical data and can often be estimated from observations. It is useful in interpreting S shaped coronal structures and in constraining models of eruptions. Y1 - 2010 UR - http://dispatch.opac.d-nb.de/DB=1.1/SET=4/TTL=1/SHW?FRST=1&PRS=HOL U6 - https://doi.org/10.1051/0004-6361/200913578 SN - 0004-6361 ER - TY - JOUR A1 - Toeroek, T. A1 - Leake, J. E. A1 - Titov, Viacheslav S. A1 - Archontis, V. A1 - Mikic, Z. A1 - Linton, M. G. A1 - Dalmasse, K. A1 - Aulanier, Guillaume A1 - Kliem, Bernhard T1 - Distribution of electric currents in solar active regions JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) Y1 - 2014 U6 - https://doi.org/10.1088/2041-8205/782/1/L10 SN - 2041-8205 SN - 2041-8213 VL - 782 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Toeroek, T. A1 - Kliem, Bernhard A1 - Berger, M. A. A1 - Linton, M. G. A1 - Demoulin, Pascal A1 - van Driel-Gesztelyi, L. T1 - The evolution of writhe in kink-unstable flux ropes and erupting filaments JF - Plasma physics and controlled fusion N2 - The helical kink instability of a twisted magnetic flux tube has been suggested as a trigger mechanism for solar filament eruptions and coronal mass ejections (CMEs). In order to investigate if estimations of the pre-emptive twist can be obtained from observations of writhe in such events, we quantitatively analyze the conversion of twist into writhe in the course of the instability, using numerical simulations. We consider the line tied, cylindrically symmetric Gold-Hoyle flux rope model and measure the writhe using the formulae by Berger and Prior which express the quantity as a single integral in space. We find that the amount of twist converted into writhe does not simply scale with the initial flux rope twist, but depends mainly on the growth rates of the instability eigenmodes of higher longitudinal order than the basic mode. The saturation levels of the writhe, as well as the shapes of the kinked flux ropes, are very similar for considerable ranges of initial flux rope twists, which essentially precludes estimations of pre-eruptive twist from measurements of writhe. However, our simulations suggest an upper twist limit of similar to 6 pi for the majority of filaments prior to their eruption. KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: filaments Y1 - 2014 U6 - https://doi.org/10.1088/0741-3335/56/6/064012 SN - 0741-3335 SN - 1361-6587 VL - 56 IS - 6 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Thompson, W. T. A1 - Kliem, Bernhard A1 - Toeroek, Tibor T1 - 3D reconstruction of a rotating erupting prominence JF - Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics N2 - A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight as it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48A degrees, it was possible to match some sharp features in the later part of the eruption as seen in the 304 line in EUVI and in the H alpha-sensitive bandpass of COR1 by both STEREO Ahead and Behind. These features could then be traced out in three-dimensional space, and reprojected into a view in which the eruption is directed toward the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of a parts per thousand aEuro parts per thousand 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115A degrees from the original filament orientation inferred from H alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation are reached within a parts per thousand aEuro parts per thousand 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component. KW - Corona, active KW - Prominences, active KW - Coronal mass ejections KW - Initiation and propagation KW - Magnetic fields, corona Y1 - 2012 U6 - https://doi.org/10.1007/s11207-011-9868-5 SN - 0038-0938 VL - 276 IS - 1-2 SP - 241 EP - 259 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Teriaca, Luca A1 - Andretta, Vincenzo A1 - Auchere, Frederic A1 - Brown, Charles M. A1 - Buchlin, Eric A1 - Cauzzi, Gianna A1 - Culhane, J. Len A1 - Curdt, Werner A1 - Davila, Joseph M. A1 - Del Zanna, Giulio A1 - Doschek, George A. A1 - Fineschi, Silvano A1 - Fludra, Andrzej A1 - Gallagher, Peter T. A1 - Green, Lucie A1 - Harra, Louise K. A1 - Imada, Shinsuke A1 - Innes, Davina A1 - Kliem, Bernhard A1 - Korendyke, Clarence A1 - Mariska, John T. A1 - Martinez-Pillet, Valentin A1 - Parenti, Susanna A1 - Patsourakos, Spiros A1 - Peter, Hardi A1 - Poletto, Luca A1 - Rutten, Robert J. A1 - Schuehle, Udo A1 - Siemer, Martin A1 - Shimizu, Toshifumi A1 - Socas-Navarro, Hector A1 - Solanki, Sami K. A1 - Spadaro, Daniele A1 - Trujillo-Bueno, Javier A1 - Tsuneta, Saku A1 - Dominguez, Santiago Vargas A1 - Vial, Jean-Claude A1 - Walsh, Robert A1 - Warren, Harry P. A1 - Wiegelmann, Thomas A1 - Winter, Berend A1 - Young, Peter T1 - LEMUR large european module for solar ultraviolet research JF - Experimental astronomy : an international journal on astronomical instrumentation and data analysis N2 - The solar outer atmosphere is an extremely dynamic environment characterized by the continuous interplay between the plasma and the magnetic field that generates and permeates it. Such interactions play a fundamental role in hugely diverse astrophysical systems, but occur at scales that cannot be studied outside the solar system. Understanding this complex system requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1'' and 0.3''), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 170 and 1270 . The LEMUR slit covers 280'' on the Sun with 0.14'' per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km s (-aEuro parts per thousand 1) or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission. KW - Sun: atmosphere KW - Space vehicles: instruments KW - Techniques: spectroscopy KW - ESA cosmic vision Y1 - 2012 U6 - https://doi.org/10.1007/s10686-011-9274-x SN - 0922-6435 VL - 34 IS - 2 SP - 273 EP - 309 PB - Springer CY - Dordrecht ER -