TY - JOUR A1 - Polley, Nabarun A1 - Werner, Peter A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia T1 - Bottom, top, or in between BT - combining plasmonic nanohole arrays and hydrogel microgels for optical fiber snsor applications JF - Advanced materials interfaces N2 - Attractive label-free plasmonic optical fiber sensors can be developed by cleverly choosing the arrangement of plasmonic nanostructures and other building blocks. Here, the final response depends very much on the alignment and position (stacking) of the individual elements. In this work, three different types of fiber optic sensing geometries fabricated by simple layer-by-layer stacking are presented, consisting of stimulus-sensitive poly-N-isopropylacrylamide (polyNIPAM) microgel arrays and plasmonic nanohole arrays (NHAs), namely NHA/polyNIPAM, polyNIPAM/NHA, polyNIPAM/NHA/polyNIPAM. Their optical response to a representative stimulus, namely temperature, is investigated. NHA/polyNIPAM monitors the volume phase transition of polyNIPAM microgels through changes in the spectral position and the amplitude of the reflection minimum of plasmonic NHA. In contrast, polyNIPAM/NHA shows a more complex response to the swelling and collapse of polyNIPAM microgels in their reflectance spectra. The most pronounced changes in optical response are observed by monitoring the amplitude of the reflectance minimum of this sensor during heating/cooling cycles. Finally, the triple stack of polyNIPAM/NHA/polyNIPAM at the end of a optical fiber tip combines the advantages of the NHA/polyNIPAM, polyNIPAM/NHA double stacks for optical sensing. The unique layer-by-layer stacking of microgel and nanostructure is customizable and can be easily adopted for other applications. KW - bottom-up fabrication KW - layer-by-layer stacking KW - microgel arrays KW - optical KW - fiber sensors KW - plasmonic nanohole arrays Y1 - 2022 U6 - https://doi.org/10.1002/admi.202102312 SN - 2196-7350 VL - 9 IS - 15 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Pacholski, Claudia A1 - Rosencrantz, Sophia A1 - Rosencrantz, Ruben R. A1 - Balderas-Valadez, Ruth Fabiola T1 - Plasmonic biosensors fabricated by galvanic displacement reactions for monitoring biomolecular interactions in real time JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - Optical sensors are prepared by reduction of gold ions using freshly etched hydride-terminated porous silicon, and their ability to specifically detect binding between protein A/rabbit IgG and asialofetuin/Erythrina cristagalli lectin is studied. The fabrication process is simple, fast, and reproducible, and does not require complicated lab equipment. The resulting nanostructured gold layer on silicon shows an optical response in the visible range based on the excitation of localized surface plasmon resonance. Variations in the refractive index of the surrounding medium result in a color change of the sensor which can be observed by the naked eye. By monitoring the spectral position of the localized surface plasmon resonance using reflectance spectroscopy, a bulk sensitivity of 296 nm +/- 3 nm/RIU is determined. Furthermore, selectivity to target analytes is conferred to the sensor through functionalization of its surface with appropriate capture probes. For this purpose, biomolecules are deposited either by physical adsorption or by covalent coupling. Both strategies are successfully tested, i.e., the optical response of the sensor is dependent on the concentration of respective target analyte in the solution facilitating the determination of equilibrium dissociation constants for protein A/rabbit IgG as well as asialofetuin/Erythrina cristagalli lectin which are in accordance with reported values in literature. These results demonstrate the potential of the developed optical sensor for cost-efficient biosensor applications. KW - Optical sensor KW - Gold nanostructure KW - Localized surface plasmon resonance KW - Surface functionalization KW - Biomolecular interactions KW - Lectin Y1 - 2020 U6 - https://doi.org/10.1007/s00216-020-02414-0 SN - 1618-2642 SN - 1618-2650 VL - 412 IS - 14 SP - 3433 EP - 3445 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Pacholski, Claudia A1 - Agarwal, Vivechana A1 - Balderas-Valadez, Ruth Fabiola T1 - Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching N2 - Optical biosensors based on porous silicon were fabricated by metal assisted chemical etching. Thereby double layered porous silicon structures were obtained consisting of porous pillars with large pores on top of a porous silicon layer with smaller pores. These structures showed a similar sensing performance in comparison to electrochemically produced porous silicon interferometric sensors. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 316 KW - fourier-transform spectroscopy KW - nanostructures KW - nanowires Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394426 SP - 21430 EP - 21434 ER - TY - GEN A1 - Behrens, Karsten A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Menski, Antonia Isabell A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia A1 - Günter, Christina A1 - Lubahn, Susanne A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1316 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-587512 SN - 1866-8372 IS - 1316 SP - 35072 EP - 35082 ER - TY - JOUR A1 - Behrens, Karsten A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Menski, Antonia Isabell A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia A1 - Günter, Christina A1 - Lubahn, Susanne A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors JF - RSC Advances N2 - Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup. Y1 - 2022 U6 - https://doi.org/10.1039/d2ra05581c SN - 2046-2069 VL - 12 SP - 35072 EP - 35082 PB - RSC CY - London ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Schürmann, Robin Mathis A1 - Pacholski, Claudia T1 - One Spot-Two Sensors: Porous Silicon Interferometers in Combination With Gold Nanostructures Showing Localized Surface Plasmon Resonance JF - Frontiers in chemistry N2 - Sensors composed of a porous silicon monolayer covered with a film of nanostructured gold layer, which provide two optical signal transduction methods, are fabricated and thoroughly characterized concerning their sensing performance. For this purpose, silicon substrates were electrochemically etched in order to obtain porous silicon monolayers, which were subsequently immersed in gold salt solution facilitating the formation of a porous gold nanoparticle layer on top of the porous silicon. The deposition process was monitored by reflectance spectroscopy, and the appearance of a dip in the interference pattern of the porous silicon layer was observed. This dip can be assigned to the absorption of light by the deposited gold nanostructures leading to localized surface plasmon resonance. The bulk sensitivity of these sensors was determined by recording reflectance spectra in media having different refractive indices and compared to sensors exclusively based on porous silicon or gold nanostructures. A thorough analysis of resulting shifts of the different optical signals in the reflectance spectra on the wavelength scale indicated that the optical response of the porous silicon sensor is not influenced by the presence of a gold nanostructure on top. Moreover, the adsorption of thiol-terminated polystyrene to the sensor surface was solely detected by changes in the position of the dip in the reflectance spectrum, which is assigned to localized surface plasmon resonance in the gold nanostructures. The interference pattern resulting from the porous silicon layer is not shifted to longer wavelengths by the adsorption indicating the independence of the optical response of the two nanostructures, namely porous silicon and nanostructured gold layer, to refractive index changes and pointing to the successful realization of two sensors in one spot. KW - porous silicon KW - interferometry KW - gold nanostructures KW - surface plasmon resonance KW - optical sensor Y1 - 2019 U6 - https://doi.org/10.3389/fchem.2019.00593 SN - 2296-2646 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia T1 - Plasmonic Nanohole Arrays on Top of Porous Silicon Sensors BT - A Win-Win Situation JF - ACS applied materials & interfaces N2 - Label-free optical sensors are attractive candidates, for example, for detecting toxic substances and monitoring biomolecular interactions. Their performance can be pushed by the design of the sensor through clever material choices and integration of components. In this work, two porous materials, namely, porous silicon and plasmonic nanohole arrays, are combined in order to obtain increased sensitivity and dual-mode sensing capabilities. For this purpose, porous silicon monolayers are prepared by electrochemical etching and plasmonic nanohole arrays are obtained using a bottom-up strategy. Hybrid sensors of these two materials are realized by transferring the plasmonic nanohole array on top of the porous silicon. Reflectance spectra of the hybrid sensors are characterized by a fringe pattern resulting from the Fabry–Pérot interference at the porous silicon borders, which is overlaid with a broad dip based on surface plasmon resonance in the plasmonic nanohole array. In addition, the hybrid sensor shows a significant higher reflectance in comparison to the porous silicon monolayer. The sensitivities of the hybrid sensor to refractive index changes are separately determined for both components. A significant increase in sensitivity from 213 ± 12 to 386 ± 5 nm/RIU is determined for the transfer of the plasmonic nanohole array sensors from solid glass substrates to porous silicon monolayers. In contrast, the spectral position of the interference pattern of porous silicon monolayers in different media is not affected by the presence of the plasmonic nanohole array. However, the changes in fringe pattern reflectance of the hybrid sensor are increased 3.7-fold after being covered with plasmonic nanohole arrays and could be used for high-sensitivity sensing. Finally, the capability of the hybrid sensor for simultaneous and independent dual-mode sensing is demonstrated. KW - optical sensors KW - porous silicon KW - surface plasmon resonance KW - plasmonic KW - nanohole arrays KW - bottom-up fabrication Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c07034 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 30 SP - 36436 EP - 36444 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Estevez-Espinoza, J. O. A1 - Salazar-Kuri, U. A1 - Pacholski, Claudia A1 - Mochan, Wolf Luis A1 - Agarwal, Vivechana T1 - Fabrication of ordered tubular porous silicon structures by colloidal lithography and metal assisted chemical etching BT - SERS performance of 2D porous silicon structures JF - Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces N2 - Fabrication of well-ordered porous silicon tubular structures using colloidal lithography and metal assisted chemical etching is reported. A continuous hexagonal hole/particle gold pattern was designed over monocrystalline silicon through deposition of polyNIPAM microspheres, followed by the surface decoration with gold nanoparticles and thermal treatment. An etching reaction with HF, ethanol and H2O2 dissolved the silicon in contact with the metal nanoparticles (NP), creating a porous tubular array in the "off-metal area". The morphological characterization revealed the formation of a cylindrical hollow porous tubular shape with external and internal diameter of approx. 900 nm and 400 nm respectively, though it can be tuned to other desired sizes by choosing an appropriate dimension for the microspheres. The porous morphology and optical properties were studied as a function of resistivity of silicon substrates. Compared to two different gold templates on cSi and nontubular porous pillar structures, porous silicon tubular framework revealed a maximum surface enhanced Raman scattering enhancement factor of 10(6) for the detection of 6-mercaptopurine (6-MP). Due to the large surface area available for any surface modification, open nanostructured platforms such as those studied here have potential applications in the field of reflection/photoluminescene and SERS based optical bio-/chemical sensors. KW - SERS KW - Porous silicon KW - MACE KW - Colloidal lithography KW - PolyNIPAM KW - 6-Mercaptopurine Y1 - 2018 U6 - https://doi.org/10.1016/j.apsusc.2018.08.120 SN - 0169-4332 SN - 1873-5584 VL - 462 SP - 783 EP - 790 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Antunez, E. E. A1 - Olive-Mendez, Sion Federico A1 - Pacholski, Claudia A1 - Campos-Alvarez, Jose A1 - Bokhimi, Xim A1 - Agarwal, V. T1 - Porous silicon pillar and bilayer structure as a nucleation center for the formation of aligned vanadium pentoxide nanorods JF - Ceramics International N2 - Porous silicon single layer (PSM), bilayer (PSB) and pillar (PSP) structures have been evaluated as nucleation centers for vanadium pentoxide (V2O5) crystals. Deposition of vanadium precursor over different substrates (drop casting technique), followed by annealing treatment under Ar-H-2 (5% H-2) atmosphere, induced crystallization of vanadium oxide. With respect to c-Si/SiO2 substrate, V2O5 nanorods with relatively large aspect ratio were formed over and within PSP structures. On the other hand, pores in PSM and PSB were found to be filled with relatively smaller crystals. Additionally, PSB provided a nucleation substrate capable to align the nanocrystals in a preferential orientation, while V2O5 crystals grown on PSP were found to be randomly aligned around the nanoporous pillar microstructure. Nanorods and nanocrystals were identified as V2O5 by temperature-controlled XRD measurements and evidence of their crystalline nature was observed via transmission electron microscopy. A careful analysis of electronic microscopy images allows the identification of the facets composing the ends of the crystals and its corresponding surface free energy has been evaluated employing the Wulff theorem. Such high surface area composite structures have potential applications as cathode material in Lithium-ion batteries. KW - Porous silicon KW - Vanadium pentoxide KW - Nanorods KW - Crystallization KW - Nanostructures Y1 - 2017 U6 - https://doi.org/10.1016/j.ceramint.2017.03.114 SN - 0272-8842 SN - 1873-3956 VL - 43 SP - 8023 EP - 8030 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Agarwal, Vivechana A1 - Pacholski, Claudia T1 - Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching JF - RSC Advances N2 - Optical biosensors based on porous silicon were fabricated by metal assisted chemical etching. Thereby double layered porous silicon structures were obtained consisting of porous pillars with large pores on top of a porous silicon layer with smaller pores. These structures showed a similar sensing performance in comparison to electrochemically produced porous silicon interferometric sensors. Y1 - 2016 U6 - https://doi.org/10.1039/c5ra26816h SN - 2046-2069 VL - 6 SP - 21430 EP - 21434 PB - Royal Society of Chemistry CY - Cambridge ER -