TY - JOUR A1 - Aldoretta, E. J. A1 - St-Louis, N. A1 - Richardson, N. D. A1 - Moffat, Anthony F. J. A1 - Eversberg, T. A1 - Hill, G. M. A1 - Shenar, Tomer A1 - Artigau, E. A1 - Gauza, B. A1 - Knapen, J. H. A1 - Kubat, Jiří A1 - Kubatova, Brankica A1 - Maltais-Tariant, R. A1 - Munoz, M. A1 - Pablo, H. A1 - Ramiaramanantsoa, T. A1 - Richard-Laferriere, A. A1 - Sablowski, D. P. A1 - Simon-Diaz, S. A1 - St-Jean, L. A1 - Bolduan, F. A1 - Dias, F. M. A1 - Dubreuil, P. A1 - Fuchs, D. A1 - Garrel, T. A1 - Grutzeck, G. A1 - Hunger, T. A1 - Kuesters, D. A1 - Langenbrink, M. A1 - Leadbeater, R. A1 - Li, D. A1 - Lopez, A. A1 - Mauclaire, B. A1 - Moldenhawer, T. A1 - Potter, M. A1 - dos Santos, E. M. A1 - Schanne, L. A1 - Schmidt, J. A1 - Sieske, H. A1 - Strachan, J. A1 - Stinner, E. A1 - Stinner, P. A1 - Stober, B. A1 - Strandbaek, K. A1 - Syder, T. A1 - Verilhac, D. A1 - Waldschlaeger, U. A1 - Weiss, D. A1 - Wendt, A. T1 - An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134 JF - Monthly notices of the Royal Astronomical Society N2 - During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He ii lambda 5411 emission line, the previously identified period was refined to P = 2.255 +/- 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 +/- 6 d, or similar to 18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Delta I center dot a parts per thousand integral 90A degrees was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C iv lambda lambda 5802,5812 and He i lambda 5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He i lambda 5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist. KW - instabilities KW - methods: data analysis KW - techniques: spectroscopic KW - stars: individual: WR 134 KW - stars: massive KW - stars: Wolf-Rayet Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw1188 SN - 0035-8711 SN - 1365-2966 VL - 460 SP - 3407 EP - 3417 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bohdan, Artem A1 - Niemiec, Jacek A1 - Kobzar, Oleh A1 - Pohl, Martin T1 - Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We perform particle-in-cell simulations of perpendicular nonrelativistic collisionless shocks to study electron heating and pre-acceleration for parameters that permit the extrapolation to the conditions at young supernova remnants. Our high-resolution large-scale numerical experiments sample a representative portion of the shock surface and demonstrate that the efficiency of electron injection is strongly modulated with the phase of the shock reformation. For plasmas with low and moderate temperature (plasma beta beta p =5.10(-4) and 0.5 beta p =), we explore the nonlinear shock structure and electron pre-acceleration for various orientations of the large-scale magnetic field with respect to the simulation plane, while keeping it at 90 degrees to the shock normal. Ion reflection off of the shock leads to the formation of magnetic filaments in the shock ramp, resulting from Weibel-type instabilities, and electrostatic Buneman modes in the shock foot. In all of the cases under study, the latter provides first-stage electron energization through the shock-surfing acceleration mechanism. The subsequent energization strongly depends on the field orientation and proceeds through adiabatic or second-order Fermi acceleration processes for configurations with the out-of-plane and in-plane field components, respectively. For strictly out-of-plane field, the fraction of suprathermal electrons is much higher than for other configurations, because only in this case are the Buneman modes fully captured by the 2D simulation grid. Shocks in plasma with moderate bp provide more efficient pre-acceleration. The relevance of our results to the physics of fully 3D systems is discussed. KW - acceleration of particles KW - instabilities KW - ISM: supernova remnants KW - methods: numerical KW - plasmas KW - shock Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa872a SN - 0004-637X SN - 1538-4357 VL - 847 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bohdan, Artem A1 - Niemiec, Jacek A1 - Pohl, Martin A1 - Matsumoto, Yosuke A1 - Amano, Takanobu A1 - Hoshino, Masahiro T1 - Kinetic Simulations of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants BT - I. Electron Shock-surfing Acceleration JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Electron injection at high Mach number nonrelativistic perpendicular shocks is studied here for parameters that are applicable to young SNR shocks. Using high-resolution large-scale two-dimensional fully kinetic particle-in-cell simulations and tracing individual particles, we in detail analyze the shock-surfing acceleration (SSA) of electrons at the leading edge of the shock foot. The central question is to what degree the process can be captured in 2D3V simulations. We find that the energy gain in SSA always arises from the electrostatic field of a Buneman wave. Electron energization is more efficient in the out-of-plane orientation of the large-scale magnetic field because both the phase speed and the amplitude of the waves are higher than for the in-plane scenario. Also, a larger number of electrons is trapped by the waves compared to the in-plane configuration. We conclude that significant modifications of the simulation parameters are needed to reach the same level of SSA efficiency as in simulations with out-of-plane magnetic field or 3D simulations. KW - acceleration of particles KW - instabilities KW - ISM: supernova remnants KW - methods: numerical KW - plasmas KW - shock waves Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/ab1b6d SN - 0004-637X SN - 1538-4357 VL - 878 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Hassanin, Alshaimaa A1 - Kliem, Bernhard A1 - Seehafer, Norbert T1 - Helical kink instability in the confined solar eruption on 2002 May 27 JF - Astronomische Nachrichten = Astronomical notes KW - instabilities KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) KW - Sun: flares Y1 - 2016 U6 - https://doi.org/10.1002/asna.201612446 SN - 0004-6337 SN - 1521-3994 VL - 337 SP - 1082 EP - 1089 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kliem, Bernhard A1 - Seehafer, Norbert T1 - Helicity shedding by flux rope ejection JF - Astronomy and astrophysics : an international weekly journal N2 - We quantitatively address the conjecture that magnetic helicity must be shed from the Sun by eruptions launching coronal mass ejections in order to limit its accumulation in each hemisphere. By varying the ratio of guide and strapping field and the flux rope twist in a parametric simulation study of flux rope ejection from approximately marginally stable force-free equilibria, different ratios of self- and mutual helicity are set and the onset of the torus or helical kink instability is obtained. The helicity shed is found to vary over a broad range from a minor to a major part of the initial helicity, with self helicity being largely or completely shed and mutual helicity, which makes up the larger part of the initial helicity, being shed only partly. Torus-unstable configurations with subcritical twist and without a guide field shed up to about two-thirds of the initial helicity, while a highly twisted, kink-unstable configuration sheds only about one-quarter. The parametric study also yields stable force-free flux rope equilibria up to a total flux-normalized helicity of 0.25, with a ratio of self- to total helicity of 0.32 and a ratio of flux rope to external poloidal flux of 0.94. These results numerically demonstrate the conjecture of helicity shedding by coronal mass ejections and provide a first account of its parametric dependence. Both self- and mutual helicity are shed significantly; this reduces the total initial helicity by a fraction of ∼0.4--0.65 for typical source region parameters. KW - instabilities KW - magnetic fields KW - magnetohydrodynamics (MHD) KW - Sun KW - corona KW - coronal mass ejections (CMEs) KW - flares Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202142422 SN - 0004-6361 SN - 1432-0746 VL - 659 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kliem, Bernhard A1 - Toeroek, Tibor A1 - Titov, Viacheslav S. A1 - Lionello, Roberto A1 - Linker, Jon A. A1 - Liu, Rui A1 - Liu, Chang A1 - Wang, Haimin T1 - Slow rise and partial eruption of a double-decker filament. II. A double flux rope model JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov & Demoulin and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions, with the lower rope typically becoming unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold value, the configuration also admits evolutions which lead to partial eruptions with only the upper flux rope becoming unstable and the lower one remaining in place. This can be triggered by a transfer of flux and current from the lower to the upper rope, as suggested by the observations of a split filament in Paper I. It can also result from tether-cutting reconnection with the ambient flux at the X-type structure between the flux ropes, which similarly influences their stability properties in opposite ways. This is demonstrated for the numerically constructed equilibrium. KW - instabilities KW - magnetohydrodynamics (MHD) KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: flares Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/792/2/107 SN - 0004-637X SN - 1538-4357 VL - 792 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Krtička, Jiří A1 - Feldmeier, Achim T1 - Stochastic light variations in hot stars from wind instability BT - finding photometric signatures and testing against the TESS data JF - Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO) N2 - Context Line-driven wind instability is expected to cause small-scale wind inhomogeneities, X-ray emission, and wind line profile variability. The instability can already develop around the sonic point if it is initiated close to the photosphere due to stochastic turbulent motions. In such cases, it may leave its imprint on the light curve as a result of wind blanketing. Aims We study the photometric signatures of the line-driven wind instability. Methods We used line-driven wind instability simulations to determine the wind variability close to the star. We applied two types of boundary perturbations: a sinusoidal one that enables us to study in detail the development of the instability and a stochastic one given by a Langevin process that provides a more realistic boundary perturbation. We estimated the photometric variability from the resulting mass-flux variations. The variability was simulated assuming that the wind consists of a large number of independent conical wind sectors. We compared the simulated light curves with TESS light curves of OB stars that show stochastic variability. Results We find two typical signatures of line-driven wind instability in photometric data: a knee in the power spectrum of magnitude fluctuations, which appears due to engulfment of small-scale structure by larger structures, and a negative skewness of the distribution of fluctuations, which is the result of spatial dominance of rarefied regions. These features endure even when combining the light curves from independent wind sectors. Conclusions The stochastic photometric variability of OB stars bears certain signatures of the line-driven wind instability. The distribution function of observed photometric data shows negative skewness and the power spectra of a fraction of light curves exhibit a knee. This can be explained as a result of the line-driven wind instability triggered by stochastic base perturbations. KW - stars: winds KW - outflows KW - stars: mass-loss KW - stars: early-type KW - hydrodynamics KW - instabilities KW - stars: variables: general Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202040148 SN - 1432-0746 VL - 648 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Niemiec, Jacek A1 - Pohl, Martin A1 - Bret, Antoine A1 - Wieland, Volkmar T1 - Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present results of 2D3V particle-in-cell simulations of nonrelativistic plasma collisions with absent or parallel large-scale magnetic field for parameters applicable to the conditions at young supernova remnants. We study the collision of plasma slabs of different density, leading to two different shocks and a contact discontinuity. Electron dynamics play an important role in the development of the system. While nonrelativistic shocks in both unmagnetized and magnetized plasmas can be mediated by Weibel-type instabilities, the efficiency of shock-formation processes is higher when a large-scale magnetic field is present. The electron distributions downstream of the forward and reverse shocks are generally isotropic, whereas that is not always the case for the ions. We do not see any significant evidence of pre-acceleration, neither in the electron population nor in the ion distribution. KW - acceleration of particles KW - instabilities KW - ISM: supernova remnants KW - methods: numerical KW - plasmas KW - shock waves Y1 - 2012 U6 - https://doi.org/10.1088/0004-637X/759/1/73 SN - 0004-637X SN - 1538-4357 VL - 759 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Oskinova, Lida A1 - Feldmeier, Achim A1 - Kretschmar, Peter T1 - Clumped stellar winds in supergiant high-mass X-ray binaries: X-ray variability and photoionization JF - Monthly notices of the Royal Astronomical Society N2 - The clumping of massive star winds is an established paradigm, which is confirmed by multiple lines of evidence and is supported by stellar wind theory. The purpose of this paper is to bridge the gap between detailed models of inhomogeneous stellar winds in single stars and the phenomenological description of donor winds in supergiant high-mass X-ray binaries (HMXBs). We use the results from time-dependent hydrodynamical models of the instability in the line-driven wind of a massive supergiant star to derive the time-dependent accretion rate on to a compact object in the BondiHoyleLyttleton approximation. The strong density and velocity fluctuations in the wind result in strong variability of the synthetic X-ray light curves. The model predicts a large-scale X-ray variability, up to eight orders of magnitude, on relatively short time-scales. The apparent lack of evidence for such strong variability in the observed HMXBs indicates that the details of the accretion process act to reduce the variability resulting from the stellar wind velocity and density jumps. KW - accretion, accretion discs KW - instabilities KW - stars: neutron KW - X-rays: binaries KW - X-rays: stars Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2966.2012.20507.x SN - 0035-8711 VL - 421 IS - 4 SP - 2820 EP - 2831 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Rüdiger, Günther A1 - Schultz, Manfred T1 - Large-scale dynamo action of magnetized Taylor-Couette flows JF - Monthly notices of the Royal Astronomical Society N2 - A conducting Taylor-Couette flow with quasi-Keplerian rotation law containing a toroidal magnetic field serves as a mean-field dynamo model of the Tayler-Spruit type. The flows are unstable against non-axisymmetric perturbations which form electromotive forces defining a effect and eddy diffusivity. If both degenerated modes with m = +/- 1 are excited with the same power then the global a effect vanishes and a dynamo cannot work. It is shown, however, that the Tayler instability produces finite alpha effects if only an isolated mode is considered but this intrinsic helicity of the single-mode is too low for an alpha(2) dynamo. Moreover, an alpha Omega dynamo model with quasi-Keplerian rotation requires a minimum magnetic Reynolds number of rotation of Rm similar or equal to 2000 to work. Whether it really works depends on assumptions about the turbulence energy. For a steeper-than-quadratic dependence of the turbulence intensity on the magnetic field, however, dynamos are only excited if the resulting magnetic eddy diffusivity approximates its microscopic value, eta(T) similar or equal to eta. By basically lower or larger eddy diffusivities the dynamo instability is suppressed. KW - dynamo KW - instabilities KW - MHD KW - magnetic fields Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa293 SN - 0035-8711 SN - 1365-2966 VL - 493 IS - 1 SP - 1249 EP - 1260 PB - Oxford Univ. Press CY - Oxford ER -