TY - JOUR A1 - Toke, Nathan A. A1 - Arrowsmith, J. Ramon A1 - Rymer, Michael J. A1 - Landgraf, Angela A1 - Haddad, David E. A1 - Busch, Melanie A1 - Coyan, Joshua A1 - Hannah, Alexander T1 - Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California JF - Geology N2 - Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/-4.3 mm/yr (1 sigma) for the main trace of the San Andreas fault at Parkfield, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (similar to 35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (<30 mm/yr). The paleoseismic exposures at the Miller's Field site reveal a pervasive fabric of clay shear bands, oriented clockwise oblique to the San Andreas fault strike and extending into the uppermost stratigraphy. This fabric is consistent with dextral aseismic creep and observations of surface slip from the 28 September 2004 M6 Parkfield earthquake. Together, this slip rate and deformation fabric suggest that the historically observed San Andreas fault slip behavior along the Parkfield section has persisted for at least a millennium, and that significant slip is accommodated by structures in a zone beyond the main San Andreas fault trace. Y1 - 2011 U6 - https://doi.org/10.1130/G31498.1 SN - 0091-7613 VL - 39 IS - 3 SP - 243 EP - 246 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Haddad, David E. A1 - Zielke, Olaf A1 - Arrowsmith, J. Ramon A1 - Purvance, Matthew D. A1 - Haddad, Amanda G. A1 - Landgraf, Angela T1 - Estimating two-dimensional static stabilities and geomorphic settings of precariously balanced rocks from unconstrained digital photographs JF - Geosphere N2 - The need to accurately document the spatiotemporal distribution of earthquake-generated strong ground motions is essential for evaluating the seismic vulnerability of sites of critical infrastructure. Understanding the threshold for maximum earthquake-induced ground motions at such sites provides valuable information to seismologists, earthquake engineers, local agencies, and policymakers when determining ground motion hazards of seismically sensitive infrastructures. In this context, fragile geologic features such as precariously balanced rocks (PBRs) serve as negative evidence for earthquake-induced ground motions and provide important physical constraints on the upper limits of ground motions. The three-dimensional (3D) shape of a PBR is a critical factor in determining its static stability and thus susceptibility to toppling during strong ground shaking events. Furthermore, the geomorphic settings of PBRs provide important controls on PBR exhumation histories that are interpreted from surface exposure dating methods. In this paper, we present PBRslenderness, a MATLAB-based program that evaluates the two-dimensional (2D) static stabilities of PBRs from unconstrained digital photographs. The program's graphical user interface allows users to interactively digitize a PBR and calculates the 2D geometric parameters that define its static stability. A reproducibility study showed that our 2D calculations compare well against their counterparts that were computed in 3D (R-2 = 0.77-0.98 for 22 samples). A sensitivity study for single-user and multiuser digitization routines further confirmed the reproducibility of PBRslenderness estimates (coefficients of variation c(v) = 4.3%-6.5% for 100 runs; R-2 = 0.87-0.99 for 20 PBRs). We used PBRslenderness to analyze 261 PBRs in a low-seismicity setting to investigate the local geomorphic controls on PBR stability and preservation. PBRslenderness showed that a PBR's shape strongly controls its static stability and that there is no relationship between a PBR's stability and its geomorphic location in a drainage basin. However, the geomorphic settings of PBRs control their preservation potential by restricting their formation to hillslope gradients <40 degrees and the upper reaches of drainage basins. Such examples of our program's utility have led to its use in archival efforts of PBRs in southern California and Nevada, USA. Y1 - 2012 U6 - https://doi.org/10.1130/GES00788.1 SN - 1553-040X VL - 8 IS - 5 SP - 1042 EP - 1053 PB - American Institute of Physics CY - Boulder ER -