TY - JOUR A1 - Parry, Victor A1 - Schlägel, Ulrike E. A1 - Tiedemann, Ralph A1 - Weithoff, Guntram T1 - Behavioural responses of defended and undefended prey to their predator BT - a case study of rotifera JF - Biology : open access journal N2 - Many animals that have to cope with predation have evolved mechanisms to reduce their predation risk. One of these mechanisms is change in morphology, for example, the development of spines. These spines are induced, when mothers receive chemical signals of a predator (kairomones) and their daughters are then equipped with defensive spines. We studied the behaviour of a prey and its predator when the prey is either defended or undefended. We used common aquatic micro-invertebrates, the rotifers Brachionus calyciflorus (prey) and Asplanchna brightwellii (predator) as experimental animals. We found that undefended prey increased its swimming speed in the presence of the predator. The striking result was that the defended prey did not respond to the predator's presence. This suggests that defended prey has a different response behaviour to a predator than undefended conspecifics. Our study provides further insights into complex zooplankton predator-prey interactions. Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status. KW - animal behaviour KW - transgenerational response KW - Brachionus calyciflorus KW - Asplanchna brightwellii KW - video analysis Y1 - 2022 U6 - https://doi.org/10.3390/biology11081217 SN - 2079-7737 VL - 11 IS - 8 PB - MDPI CY - Basel ER - TY - THES A1 - Parry, Victor T1 - From individual to community level: Assessing swimming movement, dispersal and fitness of zooplankton T1 - Vom Individuum zur Gemeinschaft: Bewertung von Schwimmbewegungen, Ausbreitung und Fitness von Zooplankton N2 - Movement is a mechanism that shapes biodiversity patterns across spatialtemporal scales. Thereby, the movement process affects species interactions, population dynamics and community composition. In this thesis, I disentangled the effects of movement on the biodiversity of zooplankton ranging from the individual to the community level. On the individual movement level, I used video-based analysis to explore the implication of movement behavior on preypredator interactions. My results showed that swimming behavior was of great importance as it determined their survival in the face of predation. The findings also additionally highlighted the relevance of the defense status/morphology of prey, as it not only affected the prey-predator relationship by the defense itself but also by plastic movement behavior. On the community movement level, I used a field mesocosm experiment to explore the role of dispersal (time i.e., from the egg bank into the water body and space i.e., between water bodies) in shaping zooplankton metacommunities. My results revealed that priority effects and taxon-specific dispersal limitation influenced community composition. Additionally, different modes of dispersal also generated distinct community structures. The egg bank and biotic vectors (i.e. mobile links) played significant roles in the colonization of newly available habitat patches. One crucial aspect that influences zooplankton species after arrival in new habitats is the local environmental conditions. By using common garden experiments, I assessed the performance of zooplankton communities in their home vs away environments in a group of ponds embedded within an agricultural landscape. I identified environmental filtering as a driving factor as zooplankton communities from individual ponds developed differently in their home and away environments. On the individual species level, there was no consistent indication of local adaptation. For some species, I found a higher abundance/fitness in their home environment, but for others, the opposite was the case, and some cases were indifferent. Overall, the thesis highlights the links between movement and biodiversity patterns, ranging from the individual active movement to the community level. N2 - Fortbewegung ist ein Mechanismus, der die Biodiversitätsmuster sowohl über räumliche als auch zeitliche Skalen hinweg prägt. Dabei beeinflusst der Bewegungsprozess die Interaktionen zwischen den Arten, die Populationsdynamik und die Zusammensetzung der Gemeinschaften. Diese Arbeit dient dazu die Auswirkungen der Bewegung auf die Biodiversitätsmuster des Zooplanktons sowohl auf der individuellen als auch gemeinschaftlichen Ebene zu untersuchen. Um auf der individuellen Ebene die Auswirkungen des Bewegungsverhaltens auf die Interaktionen zwischen Räuber und Beute zu untersuchen, wurde eine videobasierte Analyse durchgeführt. Die Ergebnisse zeigten, dass das Schwimmverhalten von großer Bedeutung ist, da es über das Überleben der Tiere im Angesicht von Räubern entscheidet. Darüber hinaus verdeutlichen die Ergebnisse die Rolle des Verteidigungsstatus bzw. der Morphologie der Beutetiere, da diese nicht nur durch die Verteidigung selbst, sondern auch durch die Plastizität des Bewegungsverhaltens, die Beziehung zwischen Beute und Raubtier beeinflussen. Auf der Ebene der Bewegung von Gemeinschaften habe ich ein Mesokosmen-Feldexperiment durchgeführt, um die Rolle der Ausbreitung (zeitlich, d. h. von den Überdauerungsstadien, welche im Sediment gelagert sind, in Kleingewässer, und räumlich, d. h. zwischen Kleingewässer) bei der Strukturierung von Zooplankton-Metagemeinschaften zu untersuchen. Die Ergebnisse konnten zeigen, dass Prioritätseffekte und taxon-spezifische Ausbreitungslimitierungen die Zusammensetzung der Gemeinschaften beeinflussen. Darüber hinaus zeigten die Ergebnisse, dass die unterschiedlichen Ausbreitungsarten (Windausbreitung und Tierverbreitung). Einfluss auf die Gemeinschaftsstrukturen haben. Zusätzlich spielt das Überdauerungsstadien-Reservoir in Sedimenten“, sowie biotische Ausbreitungsvektoren (d. h. Tiere, engl. mobile links), eine wichtige Rolle bei der Besiedlung neuer Habitate. Die lokalen Umweltbedingungen, die eine ankommende Art in einem Habitat vorfindet, sind ein entscheidender Aspekt, der die Struktur der Zooplanktongemeinschaft beeinflusst. Mit Hilfe eines Laborexperiments, für welches Wasserproben aus Kleingewässern/Söllen genutzt wurden, die von einer Agrarlandschaft umgeben sind, konnte ich die Fitness von Zooplanktongemeinschaften in ihrem Heimathabitat vs. in einem neuen Habitat untersuchen. Hierbei konnte ich zeigen, dass die Umweltfilterung ein entscheidender Faktor für die Gemeinschaftsstrukturierung ist, da sich die Zooplanktongemeinschaften der einzelnen Kleingewässer in ihrer Heimatumgebung anders entwickelten als in einer neuen Umgebung. Auf der Art-Ebene, konnte ich jedoch keine eindeutigen Hinweise auf eine lokale Anpassung finden. Bei einigen Arten konnten allerdings höhere Abundanz/Fitness in ihrer Heimatumgebung festgestellt werden, bei anderen war das Gegenteil der Fall, und in einigen F¨allen gab es keine eindeutigen Unterschiede. Zusammenfassend, unterstreicht diese Arbeit die Zusammenhänge zwischen Bewegungs- und Biodiversitätsmustern, die von der aktiven Bewegung des Einzelnen bis hin zur Gemeinschaftsebene reichen. KW - movement KW - zooplankton KW - dispersal KW - video analysis KW - environment filtering KW - Fortbewegung KW - Ausbreitung KW - Videoanalyse KW - Umweltfilterung KW - Zooplankton Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-597697 ER - TY - GEN A1 - Parry, Victor A1 - Schlägel, Ulrike E. A1 - Tiedemann, Ralph A1 - Weithoff, Guntram T1 - Behavioural Responses of Defended and Undefended Prey to Their Predator BT - A Case Study of Rotifera T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1302 KW - animal behaviour KW - transgenerational response KW - Brachionus calyciflorus KW - Asplanchna brightwellii KW - video analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577594 SN - 1866-8372 IS - 1302 ER - TY - JOUR A1 - Parry, Victor A1 - Schlägel, Ulrike E. A1 - Tiedemann, Ralph A1 - Weithoff, Guntram T1 - Behavioural Responses of Defended and Undefended Prey to Their Predator BT - A Case Study of Rotifera JF - Biology N2 - Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status. KW - animal behaviour KW - transgenerational response KW - Brachionus calyciflorus KW - Asplanchna brightwellii KW - video analysis Y1 - 2022 U6 - https://doi.org/10.3390/biology11081217 SN - 2079-7737 VL - 11 IS - 8 PB - MDPI CY - Basel, Schweiz ER - TY - JOUR A1 - Einum, Sigurd A1 - Fossen, Erlend I. F. A1 - Parry, Victor A1 - Pelabon, Christophe T1 - Genetic variation in metabolic rate and correlations with other energy budget components and life history in Daphnia magna JF - Evolutionary Biology N2 - Much is known about the genetic variance in certain components of metabolism, most notably resting and maximum metabolic rate. This is in stark contrast to the lack of information on genetic variance in the metabolic rate of individuals that feed and express routine activity, and how this rate correlates with other components of the energy budget or life history traits. Here we quantify genetic variance in metabolic rate (MR) under such conditions, as well as food consumption, juvenile somatic growth rate and age at maturation under ad lib food availability in a set of 10 clones of Daphnia magna from a natural population. Broad sense evolvabilities (0.16 0.56%) were on the same order of magnitude as those typically observed for physiological and life history traits, and suggest that all these traits have the potential to evolve within this population. We did not find support for the previously hypothesized positive genetic correlation between metabolic rate and growth rate. Rather, the patterns of genetic correlations suggest that genetic variance in food consumption is the single most influential trait shaping somatic growth rate, but that additional variance in growth can be explained by considering the joint effect of consumption and MR. The genetic variance in consumption and MR also translated into genetic variance in age at maturation, creating a direct link between these energy budget components and a life history trait with strong fitness effects. Moreover, a weak positive correlation between MR and food consumption suggests the presence of substantial amounts of independent genetic control of these traits, consistent with results obtained using genomic approaches. KW - Respiration KW - Food intake KW - Feeding rate KW - Heritability KW - Gross growth efficiency KW - Assimilation efficiency KW - Specific dynamic action Y1 - 2019 U6 - https://doi.org/10.1007/s11692-019-09473-x SN - 0071-3260 SN - 1934-2845 VL - 46 IS - 2 SP - 170 EP - 178 PB - Springer CY - New York ER -