TY - THES A1 - Wijesingha Ahchige, Micha T1 - Canalization of plant metabolism and yield T1 - Kanalisierung des Pflanzenmetabolismus und -ertrags N2 - Plant metabolism is the main process of converting assimilated carbon to different crucial compounds for plant growth and therefore crop yield, which makes it an important research topic. Although major advances in understanding genetic principles contributing to metabolism and yield have been made, little is known about the genetics responsible for trait variation or canalization although the concepts have been known for a long time. In light of a growing global population and progressing climate change, understanding canalization of metabolism and yield seems ever-more important to ensure food security. Our group has recently found canalization metabolite quantitative trait loci (cmQTL) for tomato fruit metabolism, showing that the concept of canalization applies on metabolism. In this work two approaches to investigate plant metabolic canalization and one approach to investigate yield canalization are presented. In the first project, primary and secondary metabolic data from Arabidopsis thaliana and Phaseolus vulgaris leaf material, obtained from plants grown under different conditions was used to calculate cross-environment coefficient of variations or fold-changes of metabolite levels per genotype and used as input for genome wide association studies. While primary metabolites have lower CV across conditions and show few and mostly weak associations to genomic regions, secondary metabolites have higher CV and show more, strong metabolite to genome associations. As candidate genes, both potential regulatory genes as well as metabolic genes, can be found, albeit most metabolic genes are rarely directly related to the target metabolites, suggesting a role for both potential regulatory mechanisms as well as metabolic network structure for canalization of metabolism. In the second project, candidate genes of the Solanum lycopersicum cmQTL mapping are selected and CRISPR/Cas9-mediated gene-edited tomato lines are created, to validate the genes role in canalization of metabolism. Obtained mutants appeared to either have strong aberrant developmental phenotypes or appear wild type-like. One phenotypically inconspicuous mutant of a pantothenate kinase, selected as candidate for malic acid canalization shows a significant increase of CV across different watering conditions. Another such mutant of a protein putatively involved in amino acid transport, selected as candidate for phenylalanine canalization shows a similar tendency to increased CV without statistical significance. This potential role of two genes involved in metabolism supports the hypothesis of structural relevance of metabolism for its own stability. In the third project, a mutant for a putative disulfide isomerase, important for thylakoid biogenesis, is characterized by a multi-omics approach. The mutant was characterized previously in a yield stability screening and showed a variegated leaf phenotype, ranging from green leaves with wild type levels of chlorophyll over differently patterned variegated to completely white leaves almost completely devoid of photosynthetic pigments. White mutant leaves show wild type transcript levels of photosystem assembly factors, with the exception of ELIP and DEG orthologs indicating a stagnation at an etioplast to chloroplast transition state. Green mutant leaves show an upregulation of these assembly factors, possibly acting as overcompensation for partially defective disulfide isomerase, which seems sufficient for proper chloroplast development as confirmed by a wild type-like proteome. Likely as a result of this phenotype, a general stress response, a shift to a sink-like tissue and abnormal thylakoid membranes, strongly alter the metabolic profile of white mutant leaves. As the severity and pattern of variegation varies from plant to plant and may be effected by external factors, the effect on yield instability, may be a cause of a decanalized ability to fully exploit the whole leaf surface area for photosynthetic activity. N2 - Der pflanzliche Stoffwechsel ist der Hauptprozess, der assimilierten Kohlenstoff in unterschiedliche Stoffe umwandelt, die wichtig für das Pflanzenwachstum und somit den Ertrag sind, weswegen es ein wichtiges Forschungsthema ist. Obwohl große Fortschritte beim Verständnis der genetischen Prinzipien, die zum Stoffwechsel und Ertrag beitragen, gemacht wurden, ist noch relativ wenig über die genetischen Prinzipien bekannt, die für die Variation oder Kanalisierung von Eigenschaften verantwortlich sind, obwohl diese Konzepte schon lange bekannt sind. In Anbetracht einer wachsenden Weltbevölkerung und des fortschreitenden Klimawandels, scheint es immer wichtiger zu sein, Kanalisierung von Metabolismus und Ertrag zu verstehen, um Ernährungssicherheit zu garantieren. Unsere Gruppe hat kürzlich metabolisch kanalisierte quantitative Merkmalsregionen für den Stoffwechsel von Tomatenfrüchten gefunden und damit gezeigt, dass sich das Konzept der Kanalisierung sich auf den Stoffwechsel anwenden lässt. In dieser Arbeit werden zwei Ansätze zu Untersuchung von Kanalisierung des pflanzlichen Stoffwechsels und ein Ansatz zur Untersuchung von Ertragskanalisierung präsentiert. Im ersten Projekt, wurden Daten von Primär- und Sekundärmetaboliten von Arabidopsis thaliana und Phaseolus vulgaris, gewonnen von Pflanzen, die unter unterschiedlichen Bedingungen wuchsen, verwendet, um den Variationskoeffizient (VarK) oder die relative Änderung von Stoffgehalten umweltübergreifend für jeden Genotyp zu berechnen und als Eingabe für genomweite Assoziationsstudien verwendet. Während Primärmetabolite über unterschiedliche Umweltbedingungen einen geringeren VarK haben und nur wenige eher schwache Assoziationen zu genomischen Regionen zeigen, haben Sekundärstoffe einen höheren VarK und zeigen mehr und stärkere Assoziationen zwischen Metabolit und Genom. Als Kandidatengene können sowohl potenziell regulatorische, als auch metabolische Gene gefunden werden, jedoch sind metabolische Gene selten direkt zu den Zielmetaboliten verbunden, was für eine Rolle von sowohl regulatorischen Mechanismen als auch metabolischer Netzwerkstruktur für die Kanalisierung des Stoffwechsels spricht. Im zweiten Projekt wurden Kandidatengene aus der Solanum lycopersicum cmQTL-Kartierung, ausgewählt und CRISPR/Cas9-vermittelte, genomeditierte Tomatenlinien erschaffen, um die Rolle dieser Gene in der Kanalisierung des Metabolismus zu validieren. Erhaltene Mutanten zeigten entweder starke Fehlentwicklungsphänotypen oder erschienen wildtypähnlich. Eine phänotypisch unauffällige Mutante einer Pantothensäurekinase, die als Kandidat für die Kanalisierung von Apfelsäure gewählt wurde, zeigte einen signifikanten Anstieg des VarK über unterschiedliche Bewässerungsbedingungen. Eine andere solche Mutante eines Proteins, welches mutmaßlich im Aminosäuretransport involviert ist, welches als Kandidat für die Kanalisierung von Phenylalanin gewählt wurde, zeigt eine ähnliche Tendenz zu einem erhöhten VarK ohne statistische Signifikanz. Diese potenzielle Rolle von zwei Genen, die im Stoffwechsel involviert sind, unterstützt die Hypothese einer strukturellen Relevanz des Metabolismus für seine eigene Stabilität. Im dritten Projekt wurde eine Mutante einer mutmaßlichen Disulfid-Isomerase, welche wichtig für die Thylakoidbiogenese ist, durch einen Multiomik Ansatz charakterisiert. Die Mutante wurde vorher in einer Ertragsstabilitäts-Selektierung charakterisiert und zeigte einen panaschierten Blattphänotyp, welcher von grünen Blättern mit Wildtyp Chlorophyllgehalt über unterschiedlich gemustert panaschierte Blätter bis zu komplett weißen Blätter reichte, die fast gar keine photosynthetischen Pigmente enthielten. Weiße Blätter der Mutante zeigen Wildtyp Transkriptlevel von Photosystem-Aufbaufaktoren, mit der Ausnahme von ELIP und DEG Orthologen, was indikativ für eine Stagnation in einer Etioplast-zu-Chloroplast-Übergangsphase ist. Grüne Blätter der Mutante zeigen eine Hochregulierung dieser Aufbaufaktoren, was möglicherweise als Überkompensation für eine partiell defekte Disulfid-Isomerase wirkt und letztlich ausreichend für Chloroplastenentwicklung zu sein scheint, was wiederum durch ein wildtyp-ähnliches Proteom bestätigt wird. Wahrscheinlich als Effekt dieses Phänotyps ändern, eine generelle Stressantwort, eine Umschaltung zu einem Senke-ähnlichen Gewebe und abnormale Thylakoidmembranen, stark das metabolische Profil von weißen Blättern der Mutante. Da der Schweregrad und das Muster der Panaschierung von Pflanze zu Pflanze unterschiedlich ist und durch äußere Faktoren beeinflusst sein könnte, könnte der Effekt auf die Ertragsstabilität eine Folge einer dekanalisierten Fähigkeit sein die ganze Blattoberfläche für photosynthetische Aktivität zu nutzen. KW - canalization KW - phenotypic variation KW - metabolism KW - CRISPR/Cas9 KW - GWAS KW - CRISPR/Cas9 KW - GWAS KW - Kanalisierung KW - Metabolismus KW - phänotypische Variation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548844 ER - TY - JOUR A1 - Wagner, Nicole D. A1 - Hillebrand, Helmut A1 - Wacker, Alexander A1 - Frost, Paul C. T1 - Nutritional indicators and their uses in ecology JF - Ecology letters N2 - The nutrition of animal consumers is an important regulator of ecological processes due to its effects on their physiology, life-history and behaviour. Understanding the ecological effects of poor nutrition depends on correctly diagnosing the nature and strength of nutritional limitation. Despite the need to assess nutritional limitation, current approaches to delineating nutritional constraints can be non-specific and imprecise. Here, we consider the need and potential to develop new complementary approaches to the study of nutritional constraints on animal consumers by studying and using a suite of established and emerging biochemical and molecular responses. These nutritional indicators include gene expression, transcript regulators, protein profiling and activity, and gross biochemical and elemental composition. The potential applications of nutritional indicators to ecological studies are highlighted to demonstrate the value that this approach would have to future studies in community and ecosystem ecology. KW - Ecological stoichiometry KW - lipid profiling KW - metabolism KW - nutrient-stress KW - nutrition KW - proteomics KW - transcriptomics Y1 - 2013 U6 - https://doi.org/10.1111/ele.12067 SN - 1461-023X VL - 16 IS - 4 SP - 535 EP - 544 PB - Wiley-Blackwell CY - Hoboken ER - TY - THES A1 - Thierbach, René T1 - Identifikation des mitochondrialen Proteins Frataxin als stoffwechselmodulierenden Tumorsuppressor N2 - Die Krebsentstehung wurde vor rund 80 Jahren auf veränderten zellulären Energiestoffwechsel zurückgeführt. Diese Hypothese konnte bisher weder experimentell bewiesen noch widerlegt werden. Durch den Einsatz zweier Modellsysteme mit unterschiedlicher Expression des mitochondrialen Proteins Frataxin konnte in der vorliegenden Arbeit gezeigt werden, dass der mitochondriale Energiestoffwechsel einen Einfluss auf die Tumorentstehung zu besitzen scheint. Eine Reduktion des mitochondrialen Energiestoffwechsels wurde durch die hepatozytenspezifische Ausschaltung des mitochondrialen Proteins Frataxin in Mäusen erreicht. Der durch das Cre-/loxP-Rekombinasesystem erreichte organspezifische Knock-out wurde auf Transkriptions- und Translationsebene nachgewiesen. Anhand verminderter Aconitaseaktivität, geringeren Sauerstoffverbrauches und reduzierten ATP-Gehaltes im Lebergewebe wurde ein signifikant verminderter Energiestoffwechsel dargestellt. Zwar entsprach die Genotypenverteilung in den Versuchsgruppen der erwarteten Mendelschen Verteilung, dennoch war die mittlere Lebenserwartung der Knock-out-Tiere mit ca. 30 Wochen stark reduziert. Bereits in jungem Alter war bei diesen Tieren die Ausbildung von präneoplastischen Herden zu beobachten. Mit proteinbiochemischen Nachweistechniken konnte in Lebergewebe 4-8 Wochen alter Tiere eine verstärkte Aktivierung des Apoptosesignalweges (Cytochrom C im Zytosol, verstärkte Expression von Bax) sowie eine Modulation stressassoziierter Proteine (geringere Phosphorylierungsrate p38-MAPK, vermehrte Expression HSP-25, verminderte Expression HSP-70) aufgezeigt werden. Im inversen Ansatz wurde eine Steigerung des mitochondrialen Energiestoffwechsels durch stabile transgene Frataxinüberexpression in zwei Kolonkarzinomzelllinien erreicht. Diese Steigerung zeigte sich durch erhöhte Aconitaseaktivität, erhöhten Sauerstoffverbrauch, gesteigertes mitochondriales Membranpotenzial und erhöhten ATP-Gehalt in den Zellen. Die frataxinüberexprimierenden Zellen wuchsen signifikant langsamer als Kontrollzellen und zeigten im Soft-Agar-Assay und im Nacktmausmodell ein deutlich geringeres Potenzial zur Ausbildung von Kolonien bzw. Tumoren. Mittels Immunoblot war hier eine vermehrte Phosphorylierung der p38-MAPK festzustellen. Die zusammenfassende Betrachtung beider Modelle zeigt, dass ein reduzierter mitochondrialer Energiestoffwechsel durch Regulation der p38-MAPK und apoptotischer Signalwege ein erhöhtes Krebsrisiko zu verursachen vermag. N2 - Eigthy years ago, it was suggested that impaired energy metabolism might cause cancer. Compelling experimental evidence for this hypothesis is lacking. By use of two different model systems here we show that impaired expression of the mitochondrial protein frataxin leading to impaired mitochondrial energy metabolism appears to be inversely related to tumour growth. To generate mice with reduced mitochondrial energy metabolism the expression of mitochondrial protein frataxin was disrupted in a hepatocyte-specific manner by using the cre/loxP-system. Presence, efficiency and specificity of disruption were shown at transcriptional and translational levels. Decreased activity of aconitase, reduced oxygen consumption and diminished ATP level in the liver revealed diminished energy metabolism. Although knock-out mice were born in the expected Mendelian frequency, they exhibited a significantly decreased life expectancy. Young mice exhibited hepatic preneoplasia. The use of proteinbiochemical techniques revealed activation of apoptotic pathways (cytochrome c in the cytosol, increased expression of bax) and modulation of stress-associated cascades (decreased phosphorylation of p38-MAPK, increased expression of HSP-25 and diminished expression of HSP-70). Inversely, transgenic overexpression of frataxin in colon cancer cell lines lead to increased mitochondrial energy metabolism as demonstrated by elevated activity of aconitase, increased oxygen consumption, elevated mitochondrial membrane potential and increased ATP levels. Frataxin-overexpressing colon cancer cells exhibit a concurrent decrease in replication rate. The colony forming capacity in soft-agar-assay and tumour formation in nude mice were clearly decreased. Immunoblotting revealed elevated phosphorylation of p38-MAPK. Taken together, these models suggest that reduced mitochondrial energy metabolism may promote cancer through regulation of p38-MAPK and apoptotic pathways. T2 - Identifikation des mitochondrialen Proteins Frataxin als stoffwechselmodulierenden Tumorsuppressor KW - Energiestoffwechsel KW - Krebs KW - Frataxin KW - Knock-out KW - Zelllinien KW - Tumor KW - Mitochondrien KW - metabolism KW - cancer KW - frataxin KW - knock-out KW - cell line KW - tumor KW - energy KW - mitochondria Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001943 ER - TY - JOUR A1 - Schwahn, Kevin A1 - Beleggia, Romina A1 - Omranian, Nooshin A1 - Nikoloski, Zoran T1 - Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data JF - Frontiers in plant science N2 - Recent advances in metabolomics technologies have resulted in high-quality (time-resolved) metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA) based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higherorder dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks. KW - metabolism KW - systems biology KW - maximal correlation KW - correlation analysis KW - domestication Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.02152 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - THES A1 - Schlossarek, Dennis T1 - Identification of dynamic protein-metabolite complexes in saccharomyces cerevisiae using co-fractionation mass spectrometry T1 - Identifikation von dynamischen Protein-Metabolit Komplexes in Saccharomyces cerevisiae unter Nutzung der Co-Fraktionierungs Massenspektrometrie N2 - Cells are built from a variety of macromolecules and metabolites. Both, the proteome and the metabolome are highly dynamic and responsive to environmental cues and developmental processes. But it is not their bare numbers, but their interactions that enable life. The protein-protein (PPI) and protein-metabolite interactions (PMI) facilitate and regulate all aspects of cell biology, from metabolism to mitosis. Therefore, the study of PPIs and PMIs and their dynamics in a cell-wide context is of great scientific interest. In this dissertation, I aim to chart a map of the dynamic PPIs and PMIs across metabolic and cellular transitions. As a model system, I study the shift from the fermentative to the respiratory growth, known as the diauxic shift, in the budding yeast Saccharomyces cerevisiae. To do so, I am applying a co-fractionation mass spectrometry (CF-MS) based method, dubbed protein metabolite interactions using size separation (PROMIS). PROMIS, as well as comparable methods, will be discussed in detail in chapter 1. Since PROMIS was developed originally for Arabidopsis thaliana, in chapter 2, I will describe the adaptation of PROMIS to S. cerevisiae. Here, the obtained results demonstrated a wealth of protein-metabolite interactions, and experimentally validated 225 previously predicted PMIs. Applying orthogonal, targeted approaches to validate the interactions of a proteogenic dipeptide, Ser-Leu, five novel protein-interactors were found. One of those proteins, phosphoglycerate kinase, is inhibited by Ser-Leu, placing the dipeptide at the regulation of glycolysis. In chapter 3, I am presenting PROMISed, a novel web-tool designed for the analysis of PROMIS- and other CF-MS-datasets. Starting with raw fractionation profiles, PROMISed enables data pre-processing, profile deconvolution, scores differences in fractionation profiles between experimental conditions, and ultimately charts interaction networks. PROMISed comes with a user-friendly graphic interface, and thus enables the routine analysis of CF-MS data by non-computational biologists. Finally, in chapter 4, I applied PROMIS in combination with the isothermal shift assay to the diauxic shift in S. cerevisiae to study changes in the PPI and PMI landscape across this metabolic transition. I found a major rewiring of protein-protein-metabolite complexes, exemplified by the disassembly of the proteasome in the respiratory phase, the loss of interaction of an enzyme involved in amino acid biosynthesis and its cofactor, as well as phase and structure specific interactions between dipeptides and enzymes of central carbon metabolism. In chapter 5, I am summarizing the presented results, and discuss a strategy to unravel the potential patterns of dipeptide accumulation and binding specificities. Lastly, I recapitulate recently postulated guidelines for CF-MS experiments, and give an outlook of protein interaction studies in the near future. N2 - Die Zelle besteht aus einer Vielzahl von großen und kleinen Molekülen, und sowohl das Proteom als auch das Metabolom passen sich dynamisch den vorherrschenden Umweltbedingungen oder zellulären Anforderungen an. Allerdings ist es nicht die bloße Menge an biologischen Molekülen, sondern deren Interaktionen miteinander, die das Leben erst ermöglichen. Protein-Protein (PPI) und Protein-Metabolit Interaktionen (PMI) vollbringen und regulieren alle Aspekte der Zelle, vom Stoffwechsel bis zur Mitose. Die Studie dieser Interaktionen ist daher von fundamentalem wissenschaftlichem Interesse. In dieser Dissertation strebe ich an, eine Karte der Protein-Protein und Protein-Metabolit Interaktionen zu zeichnen, die den Übergang vom fermentativen zum respiratioschen Stoffwechsel in der Hefe Saccharomyces cerevisiae umfasst. Zu diesem Zweck nutze ich PROMIS (egl. protein metabolite interactions using size separation), eine auf der co-Fraktionierungs Massensprektrometrie (CF-MS) aufbauende Methode. PROMIS, und ähnliche Methoden zur Untersuchung von Protein-Interkationen, werden ausgiebig in Kapitel 1 vorgestellt. Da PROMIS ursprünglich für die Modellpflanze Arabadopsis thaliana entwickelt wurde, beschreibe ich in Kapitel 2 zunächst die erste Anwendung der Methode in S. cerevisiae. Die Ergebnisse stellen eine Fülle an Protein-Metabolit Interaktionen dar, und 225 zuvor prognostizierte Interaktionen wurden das erste Mal experimentell beschrieben. Mit Hilfe orthogonaler Methoden wurde außerdem eine inhibitorische Interaktion zwischen dem proteinogenen Dipeptid Ser-Leu und einem Enzym der Glykolyse gefunden. In Kapitel 3 präsentiere ich PROMISed, eine neue Web-Anwendung zur Auswertung von Daten von PROMIS oder anderen CF-MS Experimente. PROMISed kann genutzt werden um in rohen Fraktionierungs-Profile lokale Maxima zu finden, aus denen ein Interaktions-Netzwerk basierend auf Korrelationen erstellt wird. Außerdem kann die Anwendung Unterschiede in den Profilen zwischen verschiedenen experimentellen Bedingungen bewerten. PROMISed umfasst eine benutzerfreundliche grafische Oberfläche und bedarf daher keiner Programmierkenntnisse zur Nutzung. In Kapitel 4 benutze ich schließlich PROMIS und ItSA (engl. isothermal shift assay) um PPI und PMI während des Übergangs vom fermentativen zum respiratorischen Stoffwechsel in Hefe zu untersuchen. Hier beschreibe ich eine zellweite Umbildung der Protein-Metabolit-Komplexe, bespielhaft beschrieben anhand des Auseinanderfallens des Proteasoms im respiratorischen Stoffwechsel, des Verlustes der Interaktion zwischen einem Enzym des Aminosäure Stoffwechsels mit seinem Cofaktor und spezifischen Interaktionen zwischen Dipeptiden und Enzymen des zentralen Stoffwechsels. In Kapitel 5 fasse ich die gefundenen Ergebnisse zusammen und stelle eine Strategie zur Untersuchung der Spezifität sowohl der Bildung als auch der Protein-Interaktionen von Dipeptiden vor. Zu aller letzt rekapituliere ich Richtlinien für CF-MS Experimente und gebe einen Ausblick auf die nahe Zukunft der Studien der Protein-Interkationen. KW - Protein KW - Metabolit KW - Interaktion KW - Interaktions Netzwerk KW - Stoffwechsel KW - Saccharomyces cerevisiae KW - protein KW - metabolite KW - interaction KW - interaction network KW - metabolism KW - saccharomyces cerevisiae KW - interactomics KW - proteomics KW - metabolomics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-582826 ER - TY - JOUR A1 - Schell, Mareike A1 - Wardelmann, Kristina A1 - Kleinridders, Andre T1 - Untangling the effect of insulin action on brain mitochondria and metabolism JF - Journal of neuroendocrinology N2 - The regulation of energy homeostasis is controlled by the brain and, besides requiring high amounts of energy, it relies on functional insulin/insulin-like growth factor (IGF)-1 signalling in the central nervous system. This energy is mainly provided by mitochondria in form of ATP. Thus, there is an intricate interplay between mitochondrial function and insulin/IGF-1 action to enable functional brain signalling and, accordingly, propagate a healthy metabolism. To adapt to different nutritional conditions, the brain is able to sense the current energy status via mitochondrial and insulin signalling-dependent pathways and exerts an appropriate metabolic response. However, regional, cell type and receptor-specific consequences of this interaction occur and are linked to diverse outcomes such as altered nutrient sensing, body weight regulation or even cognitive function. Impairments of this cross-talk can lead to obesity and glucose intolerance and are linked to neurodegenerative diseases, yet they also induce a self-sustainable, dysfunctional 'metabolic triangle' characterised by insulin resistance, mitochondrial dysfunction and inflammation in the brain. The identification of causal factors deteriorating insulin action, mitochondrial function and concomitantly a signature of metabolic stress in the brain is of utter importance to offer novel mechanistic insights into development of the continuously rising prevalence of non-communicable diseases such as type 2 diabetes and neurodegeneration. This review aims to determine the effect of insulin action on brain mitochondrial function and energy metabolism. It precisely outlines the interaction and differences between insulin action, insulin-like growth factor (IGF)-1 signalling and mitochondrial function; distinguishes between causality and association; and reveals its consequences for metabolism and cognition. We hypothesise that an improvement of at least one signalling pathway can overcome the vicious cycle of a self-perpetuating metabolic dysfunction in the brain present in metabolic and neurodegenerative diseases. KW - brain KW - energy homeostasis KW - inflammation KW - insulin signalling KW - metabolism KW - mitochondrial function Y1 - 2021 U6 - https://doi.org/10.1111/jne.12932 SN - 0953-8194 SN - 1365-2826 VL - 33 IS - 4 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Scharnweber, Inga Kristin A1 - Andersson, Matilda L. A1 - Chaguaceda, Fernando A1 - Eklöv, Peter T1 - Intra-specific differences in metabolic rates shape carbon stable isotope trophic discrimination factors of muscle tissue in the common teleost Eurasian perch (Perca fluviatilis) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Stable isotopes represent a unique approach to provide insights into the ecology of organisms. δ13C and δ15N have specifically been used to obtain information on the trophic ecology and food-web interactions. Trophic discrimination factors (TDF, Δ13C and Δ15N) describe the isotopic fractionation occurring from diet to consumer tissue, and these factors are critical for obtaining precise estimates within any application of δ13C and δ15N values. It is widely acknowledged that metabolism influences TDF, being responsible for different TDF between tissues of variable metabolic activity (e.g., liver vs. muscle tissue) or species body size (small vs. large). However, the connection between the variation of metabolism occurring within a single species during its ontogeny and TDF has rarely been considered. Here, we conducted a 9-month feeding experiment to report Δ13C and Δ15N of muscle and liver tissues for several weight classes of Eurasian perch (Perca fluviatilis), a widespread teleost often studied using stable isotopes, but without established TDF for feeding on a natural diet. In addition, we assessed the relationship between the standard metabolic rate (SMR) and TDF by measuring the oxygen consumption of the individuals. Our results showed a significant negative relationship of SMR with Δ13C, and a significant positive relationship of SMR with Δ15N of muscle tissue, but not with TDF of liver tissue. SMR varies inversely with size, which translated into a significantly different TDF of muscle tissue between size classes. In summary, our results emphasize the role of metabolism in shaping-specific TDF (i.e., Δ13C and Δ15N of muscle tissue) and especially highlight the substantial differences between individuals of different ontogenetic stages within a species. Our findings thus have direct implications for the use of stable isotope data and the applications of stable isotopes in food-web studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1179 KW - fractionation factors KW - metabolism KW - ontogeny KW - standard metabolic rate KW - tissue types KW - δ13C KW - δ15N Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524015 SN - 1866-8372 IS - 14 ER - TY - JOUR A1 - Scharnweber, Inga Kristin A1 - Andersson, Matilda L. A1 - Chaguaceda, Fernando A1 - Eklöv, Peter T1 - Intraspecific differences in metabolic rates shape carbon stable isotope trophic discrimination factors of muscle tissue in the common teleost Eurasian perch (Perca fluviatilis) JF - Ecology and evolution N2 - Stable isotopes represent a unique approach to provide insights into the ecology of organisms. δ13C and δ15N have specifically been used to obtain information on the trophic ecology and food-web interactions. Trophic discrimination factors (TDF, Δ13C and Δ15N) describe the isotopic fractionation occurring from diet to consumer tissue, and these factors are critical for obtaining precise estimates within any application of δ13C and δ15N values. It is widely acknowledged that metabolism influences TDF, being responsible for different TDF between tissues of variable metabolic activity (e.g., liver vs. muscle tissue) or species body size (small vs. large). However, the connection between the variation of metabolism occurring within a single species during its ontogeny and TDF has rarely been considered. Here, we conducted a 9-month feeding experiment to report Δ13C and Δ15N of muscle and liver tissues for several weight classes of Eurasian perch (Perca fluviatilis), a widespread teleost often studied using stable isotopes, but without established TDF for feeding on a natural diet. In addition, we assessed the relationship between the standard metabolic rate (SMR) and TDF by measuring the oxygen consumption of the individuals. Our results showed a significant negative relationship of SMR with Δ13C, and a significant positive relationship of SMR with Δ15N of muscle tissue, but not with TDF of liver tissue. SMR varies inversely with size, which translated into a significantly different TDF of muscle tissue between size classes. In summary, our results emphasize the role of metabolism in shaping-specific TDF (i.e., Δ13C and Δ15N of muscle tissue) and especially highlight the substantial differences between individuals of different ontogenetic stages within a species. Our findings thus have direct implications for the use of stable isotope data and the applications of stable isotopes in food-web studies. KW - fractionation factors KW - metabolism KW - ontogeny KW - standard metabolic rate KW - tissue types KW - δ13C KW - δ15N Y1 - 2021 U6 - https://doi.org/10.1002/ece3.7809 SN - 2045-7758 VL - 11 IS - 14 SP - 9804 EP - 9814 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - THES A1 - Rodriguez Cubillos, Andres Eduardo T1 - Understanding the impact of heterozygosity on metabolism, growth and hybrid necrosis within a local Arabidopsis thaliana collection site T1 - Den Einfluss von Heterozygotie auf Stoffwechsel, Wachstum und Hybridnekrose innerhalb einer lokalen Arabidopsis thaliana-Sammelstelle verstehen N2 - Plants are unable to move away from unwanted environments and therefore have to locally adapt to changing conditions. Arabidopsis thaliana (Arabidopsis), a model organism in plant biology, has been able to rapidly colonize a wide spectrum of environments with different biotic and abiotic challenges. In recent years, natural variation in Arabidopsis has shown to be an excellent resource to study genes underlying adaptive traits and hybridization’s impact on natural diversity. Studies on Arabidopsis hybrids have provided information on the genetic basis of hybrid incompatibilities and heterosis, as well as inheritance patterns in hybrids. However, previous studies have focused mainly on global accessions and yet much remains to be known about variation happening within a local growth habitat. In my PhD, I investigated the impact of heterozygosity at a local collection site of Arabidopsis and its role in local adaptation. I focused on two different projects, both including hybrids among Arabidopsis individuals collected around Tübingen in Southern Germany. The first project sought to understand the impact of hybridization on metabolism and growth within a local Arabidopsis collection site. For this, the inheritance patterns in primary and secondary metabolism, together with rosette size of full diallel crosses among seven parents originating from Southern Germany were analyzed. In comparison to primary metabolites, compounds from secondary metabolism were more variable and showed pronounced non-additive inheritance patterns. In addition, defense metabolites, mainly glucosinolates, displayed the highest degree of variation from the midparent values and were positively correlated with a proxy for plant size. In the second project, the role of ACCELERATED CELL DEATH 6 (ACD6) in the defense response pathway of Arabidopsis necrotic hybrids was further characterized. Allelic interactions of ACD6 have been previously linked to hybrid necrosis, both among global and local Arabidopsis accessions. Hence, I characterized the early metabolic and ionic changes induced by ACD6, together with marker gene expression assays of physiological responses linked to its activation. An upregulation of simple sugars and metabolites linked to non-enzymatic antioxidants and the TCA cycle were detected, together with putrescine and acids linked to abiotic stress responses. Senescence was found to be induced earlier in necrotic hybrids and cytoplasmic calcium signaling was unaffected in response to temperature. In parallel, GFP-tagged constructs of ACD6 were developed. This work therefore gave novel insights on the role of heterozygosity in natural variation and adaptation and expanded our current knowledge on the physiological and molecular responses associated with ACD6 activation. N2 - Pflanzen sind sessile Organismen, die nicht in der Lage sind sich unerwünschten Lebensräumen zu entziehen, sodass sie sich an verschiedene Umweltbedingungen anpassen müssen. Arabidopsis thaliana (Arabidopsis) als Modellorganismus der Pflanzenbiologie war in der Lage eine Vielzahl von Lebensräumen zu kolonisieren und dabei verschiedenen biotischen und abiotischen Problemen zu trotzen. Natürliche Variation in Arabidopsis hat sich in den letzten Jahren als Mittel bewährt, um Gene zu analysieren, welche für adaptive Eigenschaften und natürliche Vielfalt verantwortlich sind. Studien über Arabidopsis-Hybride haben Erkenntnisse über die genetische Basis von Hybridinkompatibilitäten, Heterosis und Vererbungsmustern von Hybriden geliefert. Jedoch haben diese sich bisher lediglich mit globalen ökotyp befasst, sodass noch viele Informationen über Variation in einem lokalen Wachstumsgebiet fehlen. In meiner Doktorarbeit habe ich den Einfluss von Heterozygotie in einer lokalen Arabidopsis-Population und deren Rolle bei der Adaption untersucht. Dabei habe ich mich auf zwei Themen fokussiert. Beide Themen beinhalteten Arabidopsis-Hybride zwischen Individuen, welche in der Region um Tübingen in Deutschland gesammelt wurden. Das erste Projekt zielte darauf ab, den Einfluss der Hybridisierung auf den Metabolismus und das Wachstum der Pflanzen in einer lokalen Arabidopsis-Population zu verstehen. Dafür wurden das Vererbungsmuster von Primär- und Sekundärmetaboliten, sowie die Rosettengröße von diallelen Kreuzungen zwischen sieben Elternpflanzen analysiert. Im Vergleich zum Primärstoffwechsel variierten Sekundärmetabolite stärker und zeigten nicht-additive Vererbungsmuster. Zusätzlich zeigten Abwehrstoffe – hauptsächlich Glukosinolate – die höchste Abweichung vom Mittelwert beider Eltern und waren in positiver Korrelation mit der Größe der Pflanzen. In dem zweiten Projekt wurde die Rolle von ACCELERATED CELL DEATH 6 (ACD6) im Abwehrsignalweg von nekrotischen Arabidopsis-Hybriden detaillierter charakterisiert. Da die genetische Interaktion zwischen ACD6-Allelen von globalen und lokalen Arabidopsis-ökotypen bereits mit Hybridnekrose verknüpft wurde, habe ich frühe Metaboliten-, Ionen- und Expressionsänderungen von Markergenen charakterisiert, welche durch die Aktivierung von ACD6 induziert wurden. Eine Erhöhung von einfachen Zuckern und Metaboliten nicht-enzymatischer Antioxidantien und dem TCA-Zyklus wurde detektiert, sowie von Putrescin und anderen Säuren abiotischer Stressantworten. Es wurde nachgewiesen, dass Seneszenz früher in nekrotischen Hybriden induziert und zytoplasmatisches Calcium-Signaling nicht durch Temperatur beeinflusst wurde. Zusätzlich wurden GFP-markierte Konstrukte von ACD6 generiert. Zusammenfassend kann gesagt werden, dass diese Arbeit weitere Erkenntnisse über die Rolle von Heterozygotie in natürlicher Variation und Adaptation liefert und sie unser Wissen über die physiologischen und molekularen Veränderungen, verursacht durch die ACD6-Aktivierung, erweitert. KW - arabidopsis KW - diallel KW - nonadditive KW - inheritance KW - metabolism KW - variation KW - ACD6 KW - adaptation KW - defense KW - necrosis KW - Arabidopsis KW - Dialel KW - nicht additiv KW - Erbe KW - Stoffwechsel KW - Variation KW - ACD6 KW - Anpassung KW - Verteidigung KW - Nekrose Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-416758 ER - TY - THES A1 - Mubeen, Umarah T1 - Regulation of central carbon and nitrogen metabolism by Target of Rapamycin (TOR) kinase in Chlamydomonas reinhardtii T1 - Regulation des zentralen Kohlen- und Stickstoff Stoffwechsels durch die Target of Rapamycin Kinase in der Grünalge Chlamydomonas reinhardtii N2 - The highly conserved protein complex containing the Target of Rapamycin (TOR) kinase is known to integrate intra- and extra-cellular stimuli controlling nutrient allocation and cellular growth. This thesis describes three studies aimed to understand how TOR signaling pathway influences carbon and nitrogen metabolism in Chlamydomonas reinhardtii. The first study presents a time-resolved analysis of the molecular and physiological features across the diurnal cycle. The inhibition of TOR leads to 50% reduction in growth followed by nonlinear delays in the cell cycle progression. The metabolomics analysis showed that the growth repression is mainly driven by differential carbon partitioning between anabolic and catabolic processes. Furthermore, the high accumulation of nitrogen-containing compounds indicated that TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. In the second study the cause of the high accumulation of amino acids is explained. For this purpose, the effect of TOR inhibition on Chlamydomonas was examined under different growth regimes using stable 13C- and 15N-isotope labeling. The data clearly showed that an increased nitrogen uptake is induced within minutes after the inhibition of TOR. Interestingly, this increased N-influx is accompanied by increased activities of nitrogen assimilating enzymes. Accordingly, it was concluded that TOR inhibition induces de-novo amino acid synthesis in Chlamydomonas. The recognition of this novel process opened an array of questions regarding potential links between central metabolism and TOR signaling. Therefore a detailed phosphoproteomics study was conducted to identify the potential substrates of TOR pathway regulating central metabolism. Interestingly, some of the key enzymes involved in carbon metabolism as well as amino acid synthesis exhibited significant changes in the phosphosite intensities immediately after TOR inhibition. Altogether, these studies provide a) detailed insights to metabolic response of Chlamydomonas to TOR inhibition, b) identification of a novel process causing rapid upshifts in amino acid levels upon TOR inhibition and c) finally highlight potential targets of TOR signaling regulating changes in central metabolism. Further biochemical and molecular investigations could confirm these observations and advance the understanding of growth signaling in microalgae. N2 - Target of Rapamycin (TOR) ist das Zentralprotein eines hochkonservierten Proteinkomplexes, welcher Nährstoff- und Energie Ressourcen für zelluläre Wachstumsprozesse kontengiert. Diese Doktorarbeit beschreibt anhand dreier Studien, wie TOR zu diesem Zweck, in der Grünalge Chlamydomonas reinhardtii, den zentralen Stoffwechsel reguliert. Die erste Studie untersucht dazu das zeitaufgelöste Verhalten von Biomolekülen im Tagesverlauf synchronisiert wachsender Algen. Dabei konnte gezeigt werden, das der TOR Inhibitor Rapamycin das Wachstum um 50% reduziert und den Zellzyklus verzögert. Die Zellzyklus Verzögerung scheint dabei hauptsächlich durch veränderte Stoffwechselprozesse erklärt zu sein. Hierbei konnte gezeigt werden, dass TOR vor allem stickstoffhaltige Stoffwechselprodukte (z.B. Aminosäuren) kontrolliert, welche die Grundlage für Biomasseproduktion, Wachstum und den Zellzyklus bilden. Im Rahmen der zweiten Studie konnte dann der molekulare Mechanismus der Akkumulation der zellulären Aminosäuren aufgeklärt werden. Zu diesem Zweck wurden Fütterungsstudien mit 13C- und 15N-Isotopen durchgeführt. Die Ergebnisse dieser Fütterung konnten klar zeigen, dass die Inhibition von TOR zur verstärkten Aufnahme von Stickstoff in die Zelle und dessen Assimilierung in Aminosäuren führt. Die Aufdeckung dieses neuen, von TOR gesteuerten Prozesses eröffnete somit die Frage, wie die Signalkaskade von TOR zu den Enzymen der Aminosäuresynthese verläuft. Detaillierte phosphoproteomische Studien sollten dieser Frage nachgehen und Zielprotein der TOR Kinase zu identifizieren und regulierte Stoffwechselprozesses zu finden. Dabei stellte sich heraus, dass sowohl verschiedene Enzyme der Aminosäuresynthese als auch Enzyme des zentralen Stoffwechsels innerhalb weniger Minuten stark verändert wurden. Zusammenfassend kann man festhalten das die vorliegende Arbeit detaillierte Stoffwechselanalysen des Stoffwechsels nach einer TOR Inhibition aufdeckt. Hierbei ein neuer Mechanismus zur Regulation der Aminosäuresynthese, nach TOR Inhibition gezeigt werden konnte, welche durch systemische Regulation der Phosphorylierungsmuster zellulärer Proteine kontrolliert wird. Zusätzliche molekulare und biochemische Studien konnten weiterhin zeigen, dass wie TOR das zelluläre Wachstum der photosynthetischen Grünalge kontrolliert und somit steuert. KW - Target of Rapamycin kinase KW - Growth signaling KW - metabolism KW - phosphoproteomics KW - Chlamydomonas KW - Target of Rapamycin kinase KW - Wachstumssignale KW - Stoffwechsel KW - Phosphoproteomik KW - Chlamydomonas Y1 - 2018 ER -