TY - JOUR A1 - Bürger, Gerd A1 - Pfister, A. A1 - Bronstert, Axel T1 - Temperature-Driven Rise in Extreme Sub-Hourly Rainfall JF - Journal of climate N2 - Estimates of present and future extreme sub-hourly rainfall are derived from a daily spatial followed by a sub-daily temporal downscaling, the latter of which incorporates a novel, and crucial, temperature sensitivity. Specifically, daily global climate fields are spatially downscaled to local temperature T and precipitation P, which are then disaggregated to a temporal resolution of 10 min using a multiplicative random cascade model. The scheme is calibrated and validated with a group of 21 station records of 10-min resolution in Germany. The cascade model is used in the classical (denoted as MC) and in the new T-sensitive (MC+) version, which respects local Clausius-Clapeyron (CC) effects such as CC scaling. Extreme P is positively biased in both MC versions. Observed T sensitivity is absent in MC but well reproduced by MC+. Long-term positive trends in extreme sub-hourly P are generally more pronounced and more significant in MC+ than in MC. In units of 10-min rainfall, observed centennial trends in annual exceedance counts (EC) of P > 5 mm are +29% and in 3-yr return levels (RL) +27%. For the RCP4.5-simulated future, higher extremes are projected in both versions MC and MC+: per century, EC increases by 30% for MC and by 83% for MC+; the RL rises by 14% for MC and by 33% for MC+. Because the projected daily P trends are negligible, the sub-daily signal is mainly driven by local temperature. KW - Extreme events KW - Rainfall KW - Climate change KW - Statistical techniques KW - Time series KW - Stochastic models Y1 - 2019 U6 - https://doi.org/10.1175/JCLI-D-19-0136.1 SN - 0894-8755 SN - 1520-0442 VL - 32 IS - 22 SP - 7597 EP - 7609 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Hundecha, Yeshewatesfa A1 - Sunyer, Maria A. A1 - Lawrence, Deborah A1 - Madsen, Henrik A1 - Willems, Patrick A1 - Bürger, Gerd A1 - Kriauciuniene, Jurate A1 - Loukas, Athanasios A1 - Martinkova, Marta A1 - Osuch, Marzena A1 - Vasiliades, Lampros A1 - von Christierson, Birgitte A1 - Vormoor, Klaus Josef A1 - Yuecel, Ismail T1 - Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe JF - Journal of hydrology N2 - The effect of methods of statistical downscaling of daily precipitation on changes in extreme flow indices under a plausible future climate change scenario was investigated in 11 catchments selected from 9 countries in different parts of Europe. The catchments vary from 67 to 6171 km(2) in size and cover different climate zones. 15 regional climate model outputs and 8 different statistical downscaling methods, which are broadly categorized as change factor and bias correction based methods, were used for the comparative analyses. Different hydrological models were implemented in different catchments to simulate daily runoff. A set of flood indices were derived from daily flows and their changes have been evaluated by comparing their values derived from simulations corresponding to the current and future climate. Most of the implemented downscaling methods project an increase in the extreme flow indices in most of the catchments. The catchments where the extremes are expected to increase have a rainfall dominated flood regime. In these catchments, the downscaling methods also project an increase in the extreme precipitation in the seasons when the extreme flows occur. In catchments where the flooding is mainly caused by spring/summer snowmelt, the downscaling methods project a decrease in the extreme flows in three of the four catchments considered. A major portion of the variability in the projected changes in the extreme flow indices is attributable to the variability of the climate model ensemble, although the statistical downscaling methods contribute 35-60% of the total variance. (C) 2016 Elsevier B.V. All rights reserved. KW - Flooding KW - Statistical downscaling KW - Regional climate models KW - Climate change KW - Europe Y1 - 2016 U6 - https://doi.org/10.1016/j.jhydrol.2016.08.033 SN - 0022-1694 SN - 1879-2707 VL - 541 SP - 1273 EP - 1286 PB - Elsevier CY - Amsterdam ER - TY - INPR A1 - Bürger, Gerd T1 - Comment on "Bias correction, quantile mapping, and downscaling: revisiting the inflation issue" T2 - Journal of climate N2 - In a recent paper, Maraun describes the adverse effects of quantile mapping on downscaling. He argues that when large-scale GCM variables are rescaled directly to small-scale fields or even station data, genuine small-scale covariability is lost and replaced by uniform variability inherited from the larger scales. This leads to a misrepresentation mainly of areal means and long-term trends. This comment acknowledges the former point, although the argument is relatively old, but disagrees with the latter, showing that grid-size long-term trends can be different from local trends. Finally, because it is partly incorrectly addressed, some clarification is added regarding the inflation issue, stressing that neither randomization nor inflation is free of unverified assumptions. KW - Climate change KW - Statistics KW - Climate variability Y1 - 2014 U6 - https://doi.org/10.1175/JCLI-D-13-00184.1 SN - 0894-8755 SN - 1520-0442 VL - 27 IS - 4 SP - 1819 EP - 1820 PB - American Meteorological Soc. CY - Boston ER -