TY - JOUR A1 - Pilz, Marco A1 - Parolai, Stefano A1 - Leyton, Felipe A1 - Campos, Jaime A1 - Zschau, Jochen T1 - A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile N2 - Situated in an active tectonic region, Santiago de Chile, the country's capital with more than six million inhabitants, faces tremendous earthquake risk. Macroseismic data for the 1985 Valparaiso event show large variations in the distribution of damage to buildings within short distances, indicating strong effects of local sediments on ground motion. Therefore, a temporary seismic network was installed in the urban area for recording earthquake activity and a study was carried out aiming to estimate site amplification derived from horizontal-to- vertical (H/V) spectral ratios from earthquake data (EHV) and ambient noise (NHV), as well as using the standard spectral ratio (SSR) technique with a nearby reference station located on igneous rock. The results lead to the following conclusions: The analysis of earthquake data shows significant dependence on the local geological structure with respect to amplitude and duration. An amplification of ground motion at frequencies higher than the fundamental one can be found. This amplification would not be found when looking at NHV ratios alone. The analysis of NHV spectral ratios shows that they can only provide a lower bound in amplitude for site amplification. P-wave site responses always show lower amplitudes than those derived by S waves, and sometimes even fail to provide some frequencies of amplification. No variability in terms of time and amplitude is observed in the analysis of the H/V ratio of noise. Due to the geological conditions in some parts of the investigated area, the fundamental resonance frequency of a site is difficult to estimate following standard criteria proposed by the SESAME consortium, suggesting that these are too restrictive under certain circumstances. Y1 - 2009 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2009.04195.x SN - 0956-540X ER - TY - JOUR A1 - Picozzi, Matteo A1 - Strollo, Angelo A1 - Parolai, Stefano A1 - Durukal, Eser A1 - oezel, Oguz A1 - Karabulut, Savas A1 - Zschau, Jochen A1 - Erdik, Mustafa T1 - Site characterization by seismic noise in Istanbul, Turkey N2 - Single station seismic noise measurements were carried out at 192 sites in the western part of Istanbul, Turkey. This extensive survey allowed the fundamental resonance frequency of the sedimentary cover to be mapped, and identify areas prone to site amplification. The results are in good agreement with the geological distribution of sedimentary units, indicating a progressive decrease of the fundamental resonance frequencies from the northeastern part, where the bedrock outcrops, towards the southwestern side, where a thickness of some hundreds meters for the sedimentary cover is estimated. The particular distribution of fundamental resonance frequencies indicates that local amplification of the ground motion might play a significative role in explaining the anomalous damage distribution after the 17 August 1999 Kocaeli Earthquake. Furthermore, 2D array measurements of seismic noise were performed in the metropolitan area with the aim of obtaining a preliminary geophysical characterization of the different sedimentary covers. These measurements allow the estimation of the shear-wave velocity profile for some representative areas and the identification of the presence of strong impedance contrast responsible of seismic ground motion amplification. Comparison of a theoretical site response from an estimated S-wave velocity profile with an empirical one based on earthquake recordings strongly encourages the use of the low cost seismic noise techniques for the study of seismic site effects. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/02677261 U6 - https://doi.org/10.1016/j.soildyn.2008.05.007 SN - 0267-7261 ER - TY - JOUR A1 - Parolai, Stefano A1 - Ansal, Atilla A1 - Kurtulus, Asil A1 - Strollo, Angelo A1 - Wang, Rongjiang A1 - Zschau, Jochen T1 - The Atakoey vertical array (Turkey) : insights into seismic wave propagation in the shallow-most crustal layers by waveform deconvolution N2 - P>A vertical array of accelerometers was installed in Atakoy (western Istanbul) with the long-term aim of improving our understanding of in situ soil behaviour, to assess the modelling and parametric uncertainties associated with the employed methodologies for strong-motion site-response analysis, and for shallow geological investigations. Geotechnical and geophysical investigations were carried out to define the subsoil structure at the selected site. Data associated with 10 earthquakes (2.7 < M < 4.3) collected during the first months of operation of the array were used to image the upgoing and downgoing waves by deconvolution of waveforms recorded at different depths. Results have shown that the velocity of propagation of the imaged upgoing and downgoing waves in the borehole is consistent with that of S or P waves, depending on the component of ground acceleration analysed but independent of the chosen signal window. In particular, an excellent agreement was found between the observed upgoing and downgoing wave traveltimes and the ones calculated using a model derived by seismic noise analysis of array data. The presence of a smaller pulse on the waveforms obtained by deconvolution of the horizontal components suggests both internal S-wave reflection and S-to-P mode conversion, as well as a not normal incidence of the wavefield. The presence of a pulse propagating with S-wave velocity in the uppermost 25 m in the waveforms obtained by the deconvolution of the vertical components suggests P-to-S mode conversion. These evidences imply that, even when site amplification is mainly related to 1-D effects, the standard practice in engineering seismology of deconvolving the surface recording down to the bedrock using an approximate S-wave transfer function (generally valid for vertical incidence of SH waves) might lead to errors in the estimation of the input ground motion required in engineering calculations. Finally, downgoing waves with significant amplitudes were found down to 70 m and even to 140 m depth. This result provides a warning about the use of shallow borehole recordings as input for the numerical simulation of ground motion and for the derivation of ground motion prediction relationships. Y1 - 2009 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2009.04257.x SN - 0956-540X ER -