TY - JOUR A1 - Milles, Alexander Benedikt A1 - Dammhahn, Melanie A1 - Jeltsch, Florian A1 - Schlägel, Ulrike A1 - Grimm, Volker T1 - Fluctuations in density-dependent selection drive the evolution of a pace-of-life syndrome within and between populations JF - The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences N2 - The pace-of-life syndrome (POLS) hypothesis posits that suites of traits are correlated along a slow-fast continuum owing to life history trade-offs. Despite widespread adoption, environmental conditions driving the emergence of POLS remain unclear. A recently proposed conceptual framework of POLS suggests that a slow-fast continuum should align to fluctuations in density-dependent selection. We tested three key predictions made by this framework with an ecoevolutionary agent-based population model. Selection acted on responsiveness (behavioral trait) to interpatch resource differences and the reproductive investment threshold (life history trait). Across environments with density fluctuations of different magnitudes, we observed the emergence of a common axis of trait covariation between and within populations (i.e., the evolution of a POLS). Slow-type (fast-type) populations with high (low) responsiveness and low (high) reproductive investment threshold were selected at high (low) population densities and less (more) intense and frequent density fluctuations. In support of the predictions, fast-type populations contained a higher degree of variation in traits and were associated with higher intrinsic reproductive rate (r(0)) and higher sensitivity to intraspecific competition (gamma), pointing to a universal trade-off. While our findings support that POLS aligns with density-dependent selection, we discuss possible mechanisms that may lead to alternative evolutionary pathways. KW - pace-of-life syndrome KW - density dependence KW - life history KW - trait KW - variation KW - model KW - personality Y1 - 2022 U6 - https://doi.org/10.1086/718473 SN - 0003-0147 SN - 1537-5323 VL - 199 IS - 4 SP - E124 EP - E139 PB - Univ. of Chicago Press CY - Chicago ER - TY - JOUR A1 - Eccard, Jana A1 - Mendes Ferreira, Clara A1 - Peredo Arce, Andres A1 - Dammhahn, Melanie T1 - Top-down effects of foraging decisions on local, landscape and regional biodiversity of resources (DivGUD) JF - Ecology letters N2 - Foraging by consumers acts as a biotic filtering mechanism for biodiversity at the trophic level of resources. Variation in foraging behaviour has cascading effects on abundance, diversity, and functional trait composition of the community of resource species. Here we propose diversity at giving-up density (DivGUD), i.e. when foragers quit exploiting a patch, as a novel concept and simple measure quantifying cascading effects at multiple spatial scales. In experimental landscapes with an assemblage of plant seeds, patch residency of wild rodents decreased local alpha-DivGUD (via elevated mortality of species with large seeds) and regional gamma-DivGUD, while dissimilarity among patches in a landscape (beta-DivGUD) increased. By linking theories of adaptive foraging behaviour with community ecology, DivGUD allows to investigate cascading indirect predation effects, e.g. the ecology-of-fear framework, feedbacks between functional trait composition of resource species and consumer communities, and effects of inter-individual differences among foragers on the biodiversity of resource communities. KW - biodiversity KW - cascading effects KW - foraging behaviour KW - functional traits KW - giving-up density KW - landscape of fear KW - optimal foraging KW - patch use Y1 - 2022 U6 - https://doi.org/10.1111/ele.13901 SN - 1461-0248 VL - 25 IS - 1 SP - 3 EP - 16 PB - Wiley-Blackwell CY - Oxford [u.a.] ER - TY - JOUR A1 - Milles, Alexander A1 - Dammhahn, Melanie A1 - Grimm, Volker T1 - Intraspecific trait variation in personality-related movement behavior promotes coexistence JF - Oikos N2 - Movement behavior is an essential element of fundamental ecological processes such as competition and predation. Although intraspecific trait variation (ITV) in movement behaviors is pervasive, its consequences for ecological community dynamics are still not fully understood. Using a newly developed individual-based model, we analyzed how given and constant ITVs in foraging movement affect differences in foraging efficiencies between species competing for common resources under various resource distributions. Further, we analyzed how the effect of ITV on emerging differences in competitive abilities ultimately affects species coexistence. The model is generic but mimics observed patterns of among-individual covariation between personality, movement and space use in ground-dwelling rodents. Interacting species differed in their mean behavioral types along a slow-fast continuum, integrating consistent individual variation in average behavioral expression and responsiveness (i.e. behavioral reaction norms). We found that ITV reduced interspecific differences in competitive abilities by 5-35% and thereby promoted coexistence via an equalizing mechanism. The emergent relationships between behavioral types and foraging efficiency are characteristic for specific environmental contexts of resource distribution and population density. As these relationships are asymmetric, species that were either 'too fast' or 'too slow' benefited differently from ITV. Thus, ITV in movement behavior has consequences for species coexistence but to predict its effect in a given system requires intimate knowledge on how variation in movement traits relates to fitness components along an environmental gradient. KW - animal behavior KW - animal movement KW - coexistence KW - competitive ability KW - foraging KW - individual-based model Y1 - 2020 U6 - https://doi.org/10.1111/oik.07431 SN - 0030-1299 SN - 1600-0706 VL - 129 IS - 10 SP - 1441 EP - 1454 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schirmer, Annika A1 - Hoffmann, Julia A1 - Eccard, Jana A1 - Dammhahn, Melanie T1 - My niche BT - individual spatial niche specialization affects within- and between-species interactions JF - Proceedings of the Royal Society of London : B, Biological sciences N2 - Intraspecific trait variation is an important determinant of fundamental ecological interactions. Many of these interactions are mediated by behaviour. Therefore, interindividual differences in behaviour should contribute to individual niche specialization. Comparable with variation in morphological traits, behavioural differentiation between individuals should limit similarity among competitors and thus act as a mechanism maintaining within-species variation in ecological niches and facilitating species coexistence. Here, we aimed to test whether interindividual differences in boldness covary with spatial interactions within and between two ecologically similar, co-occurring rodent species (Myodes glareolus, Apodemus agrarius). In five subpopulations in northeast Germany, we quantified individual differences in boldness via repeated standardized tests and spatial interaction patterns via capture-mark- recapture (n = 126) and automated VHF telemetry (n = 36). We found that boldness varied with space use in both species. Individuals of the same population occupied different spatial niches, which resulted in non-random patterns of within- and between-species spatial interactions. Behavioural types mainly differed in the relative importance of intra- versus interspecific competition. Within-species variation along this competition gradient could contribute to maintaining individual niche specialization. Moreover, behavioural differentiation between individuals limits similarity among competitors, which might facilitate the coexistence of functionally equivalent species and, thus, affect community dynamics and local biodiversity. KW - animal personality KW - competition KW - individual niche specialization KW - movement ecology KW - coexistence KW - small mammals Y1 - 2020 U6 - https://doi.org/10.1098/rspb.2019.2211 SN - 0962-8452 SN - 1471-2954 VL - 287 IS - 1918 PB - Royal Society CY - London ER - TY - JOUR A1 - Steinhoff, Philip O. M. A1 - Warfen, Bennet A1 - Voigt, Sissy A1 - Uhl, Gabriele A1 - Dammhahn, Melanie T1 - Individual differences in risk-taking affect foraging across different landscapes of fear JF - Oikos N2 - One of the strongest determinants of behavioural variation is the tradeoff between resource gain and safety. Although classical theory predicts optimal foraging under risk, empirical studies report large unexplained variation in behaviour. Intrinsic individual differences in risk-taking behaviour might contribute to this variation. By repeatedly exposing individuals of a small mesopredator to different experimental landscapes of risks and resources, we tested 1) whether individuals adjust their foraging behaviour according to predictions of the general tradeoff between energy gain and predation avoidance and 2) whether individuals differ consistently and predictably from each other in how they solve this tradeoff. Wild-caught individuals (n = 42) of the jumping spiderMarpissa muscosa, were subjected to repeated release and open-field tests to quantify among-individual variation in boldness and activity. Subsequently, individuals were tested in four foraging tests that differed in risk level (white/dark background colour) and risk variation (constant risk/variable risk simulated by bird dummy overflights) and contained inaccessible but visually perceivable food patches. When exposed to a white background, individuals reduced some aspects of movement and foraging intensity, suggesting that the degree of camouflage serves as a proxy of perceived risk in these predators. Short pulses of acute predation risk, simulated by bird overflights, had only small effects on aspects of foraging behaviour. Notably, a significant part of variation in foraging was due to among-individual differences across risk landscapes that are linked to consistent individual variation in activity, forming a behavioural syndrome. Our results demonstrate the importance of among-individual differences in behaviour of animals that forage under different levels of perceived risk. Since these differences likely affect food-web dynamics and have fitness consequences, future studies should explore the mechanisms that maintain the observed variation in natural populations. KW - animal personality KW - behavioural syndrome KW - foraging KW - jumping spider KW - landscape of fear KW - risk-reward tradeoff Y1 - 2020 U6 - https://doi.org/10.1111/oik.07508 SN - 0030-1299 SN - 1600-0706 VL - 129 IS - 12 SP - 1891 EP - 1902 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Mendes Ferreira, Clara A1 - Dammhahn, Melanie A1 - Eccard, Jana T1 - Forager-mediated cascading effects on food resource species diversity T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Perceived predation risk varies in space and time. Foraging in this landscape of fear alters forager-resource interactions via cascading nonconsumptive effects. Estimating these indirect effects is difficult in natural systems. Here, we applied a novel measure to quantify the diversity at giving-up density that allows to test how spatial variation in perceived predation risk modifies the diversity of multispecies resources at local and regional spatial levels. Furthermore, we evaluated whether the nonconsumptive effects on resource species diversity can be explained by the preferences of foragers for specific functional traits and by the forager species richness. We exposed rodents of a natural community to artificial food patches, each containing an initial multispecies resource community of eight species (10 items each) mixed in sand. We sampled 35 landscapes, each containing seven patches in a spatial array, to disentangle effects at local (patch) and landscape levels. We used vegetation height as a proxy for perceived predation risk. After a period of three nights, we counted how many and which resource species were left in each patch to measure giving-up density and resource diversity at the local level (alpha diversity) and the regional level (gamma diversity and beta diversity). Furthermore, we used wildlife cameras to identify foragers and assess their species richness. With increasing vegetation height, i.e., decreasing perceived predation risk, giving-up density, and local alpha and regional gamma diversity decreased, and patches became less similar within a landscape (beta diversity increased). Foragers consumed more of the bigger and most caloric resources. The higher the forager species richness, the lower the giving-up density, and alpha and gamma diversity. Overall, spatial variation of perceived predation risk of foragers had measurable cascading effects on local and regional resource species biodiversity, independent of the forager species. Thus, nonconsumptive predation effects modify forager-resource interactions and might act as an equalizing mechanism for species coexistence. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1312 KW - coexistence KW - functional traits KW - giving-up density KW - landscape of fear KW - perceived predation risk Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585092 SN - 1866-8372 IS - 1312 ER - TY - JOUR A1 - Mendes Ferreira, Clara A1 - Dammhahn, Melanie A1 - Eccard, Jana T1 - Forager-mediated cascading effects on food resource species diversity JF - Ecology and Evolution N2 - Perceived predation risk varies in space and time. Foraging in this landscape of fear alters forager-resource interactions via cascading nonconsumptive effects. Estimating these indirect effects is difficult in natural systems. Here, we applied a novel measure to quantify the diversity at giving-up density that allows to test how spatial variation in perceived predation risk modifies the diversity of multispecies resources at local and regional spatial levels. Furthermore, we evaluated whether the nonconsumptive effects on resource species diversity can be explained by the preferences of foragers for specific functional traits and by the forager species richness. We exposed rodents of a natural community to artificial food patches, each containing an initial multispecies resource community of eight species (10 items each) mixed in sand. We sampled 35 landscapes, each containing seven patches in a spatial array, to disentangle effects at local (patch) and landscape levels. We used vegetation height as a proxy for perceived predation risk. After a period of three nights, we counted how many and which resource species were left in each patch to measure giving-up density and resource diversity at the local level (alpha diversity) and the regional level (gamma diversity and beta diversity). Furthermore, we used wildlife cameras to identify foragers and assess their species richness. With increasing vegetation height, i.e., decreasing perceived predation risk, giving-up density, and local alpha and regional gamma diversity decreased, and patches became less similar within a landscape (beta diversity increased). Foragers consumed more of the bigger and most caloric resources. The higher the forager species richness, the lower the giving-up density, and alpha and gamma diversity. Overall, spatial variation of perceived predation risk of foragers had measurable cascading effects on local and regional resource species biodiversity, independent of the forager species. Thus, nonconsumptive predation effects modify forager-resource interactions and might act as an equalizing mechanism for species coexistence. KW - coexistence KW - functional traits KW - giving-up density KW - landscape of fear KW - perceived predation risk Y1 - 2022 U6 - https://doi.org/10.1002/ece3.9523 SN - 2045-7758 VL - 12 IS - 11 PB - John Wiley & Sons ER - TY - GEN A1 - Stiegler, Jonas A1 - Lins, Alisa A1 - Dammhahn, Melanie A1 - Kramer-Schadt, Stephanie A1 - Ortmann, Sylvia A1 - Blaum, Niels T1 - Personality drives activity and space use in a mammalian herbivore T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background Animal personality has emerged as a key concept in behavioral ecology. While many studies have demonstrated the influence of personality traits on behavioral patterns, its quantification, especially in wild animal populations, remains a challenge. Only a few studies have established a link between personality and recurring movements within home ranges, although these small-scale movements are of key importance for identifying ecological interactions and forming individual niches. In this regard, differences in space use among individuals might reflect different exploration styles between behavioral types along the shy-bold continuum. Methods We assessed among-individual differences in behavior in the European hare (Lepus europaeus), a characteristic mammalian herbivore in agricultural landscapes using a standardized box emergence test for captive and wild hares. We determined an individuals’ degree of boldness by measuring the latencies of behavioral responses in repeated emergence tests in captivity. During capture events of wild hares, we conducted a single emergence test and recorded behavioral responses proven to be stable over time in captive hares. Applying repeated novel environment tests in a near-natural enclosure, we further quantified aspects of exploration and activity in captive hares. Finally, we investigated whether and how this among-individual behavioral variation is related to general activity and space use in a wild hare population. Wild and captive hares were treated similarly and GPS-collared with internal accelerometers prior to release to the wild or the outdoor enclosure, respectively. General activity was quantified as overall dynamic body acceleration (ODBA) obtained from accelerometers. Finally, we tested whether boldness explained variation in (i) ODBA in both settings and (ii) variation in home ranges and core areas across different time scales of GPS-collared hares in a wild population. Results We found three behavioral responses to be consistent over time in captive hares. ODBA was positively related to boldness (i.e., short latencies to make first contact with the new environment) in both captive and wild hares. Space use in wild hares also varied with boldness, with shy individuals having smaller core areas and larger home ranges than bold conspecifics (yet in some of the parameter space, this association was just marginally significant). Conclusions Against our prediction, shy individuals occupied relatively large home ranges but with small core areas. We suggest that this space use pattern is due to them avoiding risky, and energy-demanding competition for valuable resources. Carefully validated, activity measurements (ODBA) from accelerometers provide a valuable tool to quantify aspects of animal personality along the shy-bold continuum remotely. Without directly observing—and possibly disturbing—focal individuals, this approach allows measuring variability in animal personality, especially in species that are difficult to assess with experiments. Considering that accelerometers are often already built into GPS units, we recommend activating them at least during the initial days of tracking to estimate individual variation in general activity and, if possible, match them with a simple novelty experiment. Furthermore, information on individual behavioral types will help to facilitate mechanistic understanding of processes that drive spatial and ecological dynamics in heterogeneous landscapes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1299 KW - Animal personality KW - Movement ecology KW - Inter-individual differences KW - ODBA KW - Energy expenditure KW - European hare Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577327 SN - 1866-8372 SP - 1 EP - 12 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Stiegler, Jonas A1 - Lins, Alisa A1 - Dammhahn, Melanie A1 - Kramer-Schadt, Stephanie A1 - Ortmann, Sylvia A1 - Blaum, Niels T1 - Personality drives activity and space use in a mammalian herbivore JF - Movement Ecology N2 - Background Animal personality has emerged as a key concept in behavioral ecology. While many studies have demonstrated the influence of personality traits on behavioral patterns, its quantification, especially in wild animal populations, remains a challenge. Only a few studies have established a link between personality and recurring movements within home ranges, although these small-scale movements are of key importance for identifying ecological interactions and forming individual niches. In this regard, differences in space use among individuals might reflect different exploration styles between behavioral types along the shy-bold continuum. Methods We assessed among-individual differences in behavior in the European hare (Lepus europaeus), a characteristic mammalian herbivore in agricultural landscapes using a standardized box emergence test for captive and wild hares. We determined an individuals’ degree of boldness by measuring the latencies of behavioral responses in repeated emergence tests in captivity. During capture events of wild hares, we conducted a single emergence test and recorded behavioral responses proven to be stable over time in captive hares. Applying repeated novel environment tests in a near-natural enclosure, we further quantified aspects of exploration and activity in captive hares. Finally, we investigated whether and how this among-individual behavioral variation is related to general activity and space use in a wild hare population. Wild and captive hares were treated similarly and GPS-collared with internal accelerometers prior to release to the wild or the outdoor enclosure, respectively. General activity was quantified as overall dynamic body acceleration (ODBA) obtained from accelerometers. Finally, we tested whether boldness explained variation in (i) ODBA in both settings and (ii) variation in home ranges and core areas across different time scales of GPS-collared hares in a wild population. Results We found three behavioral responses to be consistent over time in captive hares. ODBA was positively related to boldness (i.e., short latencies to make first contact with the new environment) in both captive and wild hares. Space use in wild hares also varied with boldness, with shy individuals having smaller core areas and larger home ranges than bold conspecifics (yet in some of the parameter space, this association was just marginally significant). Conclusions Against our prediction, shy individuals occupied relatively large home ranges but with small core areas. We suggest that this space use pattern is due to them avoiding risky, and energy-demanding competition for valuable resources. Carefully validated, activity measurements (ODBA) from accelerometers provide a valuable tool to quantify aspects of animal personality along the shy-bold continuum remotely. Without directly observing—and possibly disturbing—focal individuals, this approach allows measuring variability in animal personality, especially in species that are difficult to assess with experiments. Considering that accelerometers are often already built into GPS units, we recommend activating them at least during the initial days of tracking to estimate individual variation in general activity and, if possible, match them with a simple novelty experiment. Furthermore, information on individual behavioral types will help to facilitate mechanistic understanding of processes that drive spatial and ecological dynamics in heterogeneous landscapes. KW - Animal personality KW - Movement ecology KW - Inter-individual differences KW - ODBA KW - Energy expenditure KW - European hare Y1 - 2022 U6 - https://doi.org/10.1186/s40462-022-00333-6 SN - 2051-3933 VL - 10 PB - BioMed Central (BMC), Springer Nature CY - London ER - TY - JOUR A1 - Eccard, Jana A1 - Liesenjohann, Thilo A1 - Dammhahn, Melanie T1 - Among-individual differences in foraging modulate resource exploitation under perceived predation risk JF - Oecologia N2 - Foraging is risky and involves balancing the benefits of resource acquisition with costs of predation. Optimal foraging theory predicts where, when and how long to forage in a given spatiotemporal distribution of risks and resources. However, significant variation in foraging behaviour and resource exploitation remain unexplained. Using single foragers in artificial landscapes of perceived risks and resources with diminishing returns, we aimed to test whether foraging behaviour and resource exploitation are adjusted to risk level, vary with risk during different components of foraging, and (co)vary among individuals. We quantified foraging behaviour and resource exploitation for 21 common voles (Microtus arvalis). By manipulating ground cover, we created simple landscapes of two food patches varying in perceived risk during feeding in a patch and/or while travelling between patches. Foraging of individuals was variable and adjusted to risk level and type. High risk during feeding reduced feeding duration and food consumption more strongly than risk while travelling. Risk during travelling modified the risk effects of feeding for changes between patches and resulting evenness of resource exploitation. Across risk conditions individuals differed consistently in when and how long they exploited resources and exposed themselves to risk. These among-individual differences in foraging behaviour were associated with consistent patterns of resource exploitation. Thus, different strategies in foraging-under-risk ultimately lead to unequal payoffs and might affect lower trophic levels in food webs. Inter-individual differences in foraging behaviour, i.e. foraging personalities, are an integral part of foraging behaviour and need to be fully integrated into optimal foraging theory. KW - animal personality KW - giving-up density KW - intra-specific trait variation KW - landscape of fear KW - optimal foraging KW - predation risk KW - resource KW - exploitation Y1 - 2020 U6 - https://doi.org/10.1007/s00442-020-04773-y SN - 0029-8549 SN - 1432-1939 VL - 194 IS - 4 SP - 621 EP - 634 PB - Springer CY - Berlin ER -