TY - GEN A1 - Berenstein, Igal A1 - Beta, Carsten A1 - De Decker, Yannick T1 - Comment on "Flow-induced arrest of spatiotemporal chaos and transition to a stationary pattern in the Gray-Scott model" T2 - Physical review : E, Statistical, nonlinear and soft matter physics N2 - In this Comment, we review the results of pattern formation in a reaction-diffusion-advection system following the kinetics of the Gray-Scott model. A recent paper by Das [Phys. Rev. E 92, 052914 (2015)] shows that spatiotemporal chaos of the intermittency type can disappear as the advective flow is increased. This study, however, refers to a single point in the space of kinetic parameters of the original Gray-Scott model. Here we show that the wealth of patterns increases substantially as some of these parameters are changed. In addition to spatiotemporal intermittency, defect-mediated turbulence can also be found. In all cases, however, the chaotic behavior is seen to disappear as the advective flow is increased, following a scenario similar to what was reported in our earlier work [I. Berenstein and C. Beta, Phys. Rev. E 86, 056205 (2012)] as well as by Das. We also point out that a similar phenomenon can be found in other reaction-diffusion-advection models, such as the Oregonator model for the Belousov-Zhabotinsky reaction under flow conditions. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevE.94.046201 SN - 2470-0045 SN - 2470-0053 VL - 94 PB - American Physical Society CY - College Park ER -