TY - JOUR A1 - Fritz, Michael A1 - Wolter, Juliane A1 - Rudaya, Natalia A1 - Palagushkina, Olga A1 - Nazarova, Larisa B. A1 - Obu, Jaroslav A1 - Rethemeyer, Janet A1 - Lantuit, Hugues A1 - Wetterich, Sebastian T1 - Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada) JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, delta C-13), stable water isotopes (delta O-18, delta D), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUS) correspond to the main stages of deposition (1) in a thermokarst lake (SW : 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene. (C) 2016 Elsevier Ltd. All rights reserved. KW - Permafrost peatlands KW - Arctic KW - Thermokarst KW - Talik KW - Ice-wedge polygon KW - Pollen KW - Diatoms KW - Plant macrofossils KW - Stable water isotopes KW - Deuterium excess Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.02.008 SN - 0277-3791 VL - 147 SP - 279 EP - 297 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Obu, Jaroslav A1 - Lantuit, Hugues A1 - Fritz, Michael A1 - Pollard, Wayne H. A1 - Sachs, Torsten A1 - Guenther, Frank T1 - Relation between planimetric and volumetric measurements of permafrost coast erosion: a case study from Herschel Island, western Canadian Arctic JF - Polar research : a Norwegian journal of Polar research N2 - Ice-rich permafrost coasts often undergo rapid erosion, which results in land loss and release of considerable amounts of sediment, organic carbon and nutrients, impacting the near-shore ecosystems. Because of the lack of volumetric erosion data, Arctic coastal erosion studies typically report on planimetric erosion. Our aim is to explore the relationship between planimetric and volumetric coastal erosion measurements and to update the coastal erosion rates on Herschel Island in the Canadian Arctic. We used high-resolution digital elevation models to compute sediment release and compare volumetric data to planimetric estimations of coastline movements digitized from satellite imagery. Our results show that volumetric erosion is locally less variable and likely corresponds better with environmental forcing than planimetric erosion. Average sediment release volumes are in the same range as sediment release volumes calculated from coastline movements combined with cliff height. However, the differences between these estimates are significant for small coastal sections. We attribute the differences between planimetric and volumetric coastal erosion measurements to mass wasting, which is abundant along the coasts of Herschel Island. The average recorded coastline retreat on Herschel Island was 0.68m a(-1) for the period 2000-2011. Erosion rates increased by more than 50% in comparison with the period 1970-2000, which is in accordance with a recently observed increase along the Alaskan Beaufort Sea. The estimated annual sediment release was 28.2 m(3) m(-1) with resulting fluxes of 590 kg C m(-1) and 104 kg N m(-1). KW - Coastal erosion KW - LiDAR KW - carbon fluxes KW - mass wasting KW - landslides KW - digital elevation model Y1 - 2016 U6 - https://doi.org/10.3402/polar.v35.30313 SN - 0800-0395 SN - 1751-8369 VL - 35 SP - 57 EP - 99 PB - Co-Action Publ. CY - Jarfalla ER -