TY - GEN A1 - Aichner, Bernhard A1 - Feakins, Sarah J. A1 - Lee, J. E. A1 - Herzschuh, Ulrike A1 - Liu, X. T1 - High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Central Asia is located at the confluence of large-scale atmospheric circulation systems. It is thus likely to be highly susceptible to changes in the dynamics of those systems; however, little is still known about the regional paleoclimate history. Here we present carbon and hydrogen isotopic compositions of n-alkanoic acids from a late Holocene sediment core from Lake Karakuli (eastern Pamir, Xinjiang Province, China). Instrumental evidence and isotopeenabled climate model experiments with the Laboratoire de Meteorologie Dynamique Zoom model version 4 (LMDZ4) demonstrate that delta D values of precipitation in the region are influenced by both temperature and precipitation amount. We find that these parameters are inversely correlated on an annual scale, i.e., the climate has varied between relatively cool and wet and more warm and dry over the last 50 years. Since the isotopic signals of these changes are in the same direction and therefore additive, isotopes in precipitation are sensitive recorders of climatic changes in the region. Additionally, we infer that plants use year-round precipitation (including snowmelt), and thus leaf wax delta D values must also respond to shifts in the proportion of moisture derived from westerly storms during late winter and early spring. Downcore results give evidence for a gradual shift to cooler and wetter climates between 3.5 and 2.5 cal kyr BP, interrupted by a warm and dry episode between 3.0 and 2.7 kyr BP. Further cool and wet episodes occur between 1.9 and 1.5 and between 0.6 and 0.1 kyr BP, the latter coeval with the Little Ice Age. Warm and dry episodes from 2.5 to 1.9 and 1.5 to 0.6 kyr BP coincide with the Roman Warm Period and Medieval Climate Anomaly, respectively. Finally, we find a drying tend in recent decades. Regional comparisons lead us to infer that the strength and position of the westerlies, and wider northern hemispheric climate dynamics, control climatic shifts in arid Central Asia, leading to complex local responses. Our new archive from Lake Karakuli provides a detailed record of the local signatures of these climate transitions in the eastern Pamir. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 506 KW - North-Atlantic climate KW - Aral Sea basin KW - delta-D values KW - last 15 kyr KW - athmospheric circulation KW - ice core KW - moisture evolution KW - lipid biomarkers KW - Tibetan Plateau KW - Eastern pamirs Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408442 SN - 1866-8372 IS - 506 ER - TY - GEN A1 - Mischke, Steffen A1 - Zhang, Chengjun A1 - Fan, Rong T1 - Early to mid-Holocene lake high-stand sediments at Lake Donggi Cona, northeastern Tibetan Plateau, China - T2 - Quaternary research : an interdisciplinary journal KW - Microfossils KW - Ostracoda KW - Lake level KW - Wetlands KW - Depositional setting KW - Tibetan Plateau KW - Holocene Y1 - 2015 U6 - https://doi.org/10.1016/j.yqres.2014.06.005 SN - 0033-5894 SN - 1096-0287 VL - 83 IS - 1 SP - 256 EP - 258 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Wang, Rong A1 - Zhang, Yongzhan A1 - Wünnemann, Bernd A1 - Biskaborn, Boris K. A1 - Yin, He A1 - Xia, Fei A1 - Zhou, Lianfu A1 - Diekmann, Bernhard T1 - Linkages between Quaternary climate change and sedimentary processes in Hala Lake, northern Tibetan Plateau, China JF - Journal of Asian earth sciences N2 - Profundal lake sediment cores are often interpreted in line with diverse and detailed sedimentological processes to infer paleoenvironmental conditions. The effects of frozen lake surfaces on terrigenous sediment deposition and how climate changes on the Tibetan Plateau are reflected in these lakes, however, is seldom discussed. A lake sediment core from Hala Lake (590 km(2)), northeastern Tibetan Plateau spanning the time interval from the Last Glacial Maximum to the present was investigated using high-resolution grain-size composition of lacustrine deposits. Seismic analysis along a north-south profile across the lake was used to infer the sedimentary setting within the lake basin. Periods of freezing and melting processes on the lake surface were identified by MODIS (MOD10A1) satellite data. End-member modeling of the grain size distribution allowed the discrimination between lacustrine, eolian and fluvial sediments. The dominant clay sedimentation (slack water type) during the global Last Glacial Maximum (LGM) reflects ice interceptions in long cold periods, in contrast to abundant eolian input during abrupt cold events. Therefore, fluvial and slack water sedimentation processes can indicate changes in the local paleoclimate during periods of the lake being frozen, when eolian input was minor. Inferred warm (i.e., similar to 22.7 and 19.5 cal. ka BP) and cold (i.e., similar to 11-9 and 3-1.5 cal. ka BP) spells have significant environmental impacts, not only in the regional realm, but they are also coherent with global-scale climate events. The eolian input generally follows the trend of the mid-latitude westerly wind dynamics in winter, contributing medium-sized sand to the lake center, deposited within the ice cover during icing and melting phases. Enhanced input was dominant during the Younger Dryas, Heinrich Event 1 and at around 8.2 ka, equivalent to the well-known events of the North Atlantic realm. (C) 2015 Elsevier Ltd. All rights reserved. KW - Tibetan Plateau KW - Lake deposits KW - End-member modeling KW - Grain size KW - Pleistocene and Holocene climate Y1 - 2015 U6 - https://doi.org/10.1016/j.jseaes.2015.04.008 SN - 1367-9120 SN - 1878-5786 VL - 107 SP - 140 EP - 150 PB - Elsevier CY - Oxford ER -