TY - JOUR A1 - Rolinski, Susanne A1 - Rammig, A. A1 - Walz, Ariane A1 - von Bloh, Werner A1 - van Oijen, M. A1 - Thonicke, Kirsten T1 - A probabilistic risk assessment for the vulnerability of the European carbon cycle to weather extremes: the ecosystem perspective JF - Biogeosciences N2 - Extreme weather events are likely to occur more often under climate change and the resulting effects on ecosystems could lead to a further acceleration of climate change. But not all extreme weather events lead to extreme ecosystem response. Here, we focus on hazardous ecosystem behaviour and identify coinciding weather conditions. We use a simple probabilistic risk assessment based on time series of ecosystem behaviour and climate conditions. Given the risk assessment terminology, vulnerability and risk for the previously defined hazard are estimated on the basis of observed hazardous ecosystem behaviour. We apply this approach to extreme responses of terrestrial ecosystems to drought, defining the hazard as a negative net biome productivity over a 12-month period. We show an application for two selected sites using data for 1981-2010 and then apply the method to the pan-European scale for the same period, based on numerical modelling results (LPJmL for ecosystem behaviour; ERA-Interim data for climate). Our site-specific results demonstrate the applicability of the proposed method, using the SPEI to describe the climate condition. The site in Spain provides an example of vulnerability to drought because the expected value of the SPEI is 0.4 lower for hazardous than for non-hazardous ecosystem behaviour. In northern Germany, on the contrary, the site is not vulnerable to drought because the SPEI expectation values imply wetter conditions in the hazard case than in the non-hazard case. At the pan-European scale, ecosystem vulnerability to drought is calculated in the Mediterranean and temperate region, whereas Scandinavian ecosystems are vulnerable under conditions without water shortages. These first model- based applications indicate the conceptual advantages of the proposed method by focusing on the identification of critical weather conditions for which we observe hazardous ecosystem behaviour in the analysed data set. Application of the method to empirical time series and to future climate would be important next steps to test the approach. Y1 - 2015 U6 - https://doi.org/10.5194/bg-12-1813-2015 SN - 1726-4170 SN - 1726-4189 VL - 12 IS - 6 SP - 1813 EP - 1831 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Philips, Andrea A1 - Walz, Ariane A1 - Bergner, Andreas G. N. A1 - Gräff, Thomas A1 - Heistermann, Maik A1 - Kienzler, Sarah A1 - Korup, Oliver A1 - Lipp, Torsten A1 - Schwanghart, Wolfgang A1 - Zeilinger, Gerold T1 - Immersive 3D geovisualization in higher education JF - Journal of geography in higher education N2 - In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students reveal benefits, such as better orientation in the study area, higher interactivity with the data, improved discourse among students and enhanced motivation through immersive 3D geovisualization. This suggests that immersive 3D visualization can effectively be used in higher education and that 3D CAVE settings enhance interactive learning between students. KW - immersive 3D geovisualization KW - 3D CAVE KW - higher education KW - learning success KW - student survey KW - flood risk Y1 - 2015 U6 - https://doi.org/10.1080/03098265.2015.1066314 SN - 0309-8265 SN - 1466-1845 VL - 39 IS - 3 SP - 437 EP - 449 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Frank, Dorothe A. A1 - Reichstein, Markus A1 - Bahn, Michael A1 - Thonicke, Kirsten A1 - Frank, David A1 - Mahecha, Miguel D. A1 - Smith, Pete A1 - Van der Velde, Marijn A1 - Vicca, Sara A1 - Babst, Flurin A1 - Beer, Christian A1 - Buchmann, Nina A1 - Canadell, Josep G. A1 - Ciais, Philippe A1 - Cramer, Wolfgang A1 - Ibrom, Andreas A1 - Miglietta, Franco A1 - Poulter, Ben A1 - Rammig, Anja A1 - Seneviratne, Sonia I. A1 - Walz, Ariane A1 - Wattenbach, Martin A1 - Zavala, Miguel A. A1 - Zscheischler, Jakob T1 - Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts JF - Global change biology N2 - Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks. KW - carbon cycle KW - climate change KW - climate extremes KW - climate variability KW - disturbance KW - terrestrial ecosystems Y1 - 2015 U6 - https://doi.org/10.1111/gcb.12916 SN - 1354-1013 SN - 1365-2486 VL - 21 IS - 8 SP - 2861 EP - 2880 PB - Wiley-Blackwell CY - Hoboken ER -