TY - JOUR A1 - Kneis, David T1 - A lightweight framework for rapid development of object-based hydrological model engines JF - Environmental modelling & software with environment data news N2 - Computer-based simulation models are frequently used in hydrological research and engineering but also in other fields of environmental sciences. New case studies often require existing model concepts to be adapted. Extensions may be necessary due to the peculiarities of the studied natural system or subtleties of anthropogenic control. In other cases, simplifications must be made in response to scarce data, incomplete knowledge, or restrictions set by the spatio-temporal scale of application. This paper introduces an open-source modeling framework called ECHSE designed to cope with the above-mentioned challenges. It provides a lightweight infrastructure for the rapid development of new, reusable simulation tools and, more importantly, the safe modification of existing formulations. ECHSE-based models treat the simulated system as a collection of interacting objects. Although feedbacks are generally supported, the majority of the objects' interactions is expected to be of the feed-forward type. Therefore, the ECHSE software is particularly useful in the context of hydrological catchment modeling. Conversely, it is unsuitable, e.g., for fully hydrodynamic simulations and groundwater flow modeling. The focus of the paper is put on a comprehensible outline of the ECHSE's fundamental concepts and limitations. For the purpose of illustration, a specific, ECHSE-based solution for hydrological catchment modeling is presented which has undergone testing in a number of river basins. (C) 2015 Elsevier Ltd. All rights reserved. KW - Modeling framework KW - Genetic model KW - Hydrology KW - ECHSE Y1 - 2015 U6 - https://doi.org/10.1016/j.envsoft.2015.02.009 SN - 1364-8152 SN - 1873-6726 VL - 68 SP - 110 EP - 121 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Janssen, Annette B. G. A1 - Arhonditsis, George B. A1 - Beusen, Arthur A1 - Bolding, Karsten A1 - Bruce, Louise A1 - Bruggeman, Jorn A1 - Couture, Raoul-Marie A1 - Downing, Andrea S. A1 - Elliott, J. Alex A1 - Frassl, Marieke A. A1 - Gal, Gideon A1 - Gerla, Daan J. A1 - Hipsey, Matthew R. A1 - Hu, Fenjuan A1 - Ives, Stephen C. A1 - Janse, Jan H. A1 - Jeppesen, Erik A1 - Joehnk, Klaus D. A1 - Kneis, David A1 - Kong, Xiangzhen A1 - Kuiper, Jan J. A1 - Lehmann, Moritz K. A1 - Lemmen, Carsten A1 - Oezkundakci, Deniz A1 - Petzoldt, Thomas A1 - Rinke, Karsten A1 - Robson, Barbara J. A1 - Sachse, Rene A1 - Schep, Sebastiaan A. A1 - Schmid, Martin A1 - Scholten, Huub A1 - Teurlincx, Sven A1 - Trolle, Dennis A1 - Troost, Tineke A. A1 - Van Dam, Anne A. A1 - Van Gerven, Luuk P. A. A1 - Weijerman, Mariska A1 - Wells, Scott A. A1 - Mooij, Wolf M. T1 - Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective JF - Aquatic ecology : the international forum covering research in freshwater and marine environments N2 - Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5-10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary. KW - Water quality KW - Ecology KW - Geochemistry KW - Hydrology KW - Hydraulics KW - Hydrodynamics KW - Physical environment KW - Socio-economics KW - Model availability KW - Standardization KW - Linking Y1 - 2015 U6 - https://doi.org/10.1007/s10452-015-9544-1 SN - 1386-2588 SN - 1573-5125 VL - 49 IS - 4 SP - 513 EP - 548 PB - Springer CY - Dordrecht ER -