TY - GEN A1 - Sullivan, Mitchell A. A1 - Nitschke, Silvia A1 - Steup, Martin A1 - Minassian, Berge A. A1 - Nitschke, Felix T1 - Pathogenesis of Lafora disease BT - transition of soluble glycogen to insoluble polyglucosan T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Lafora disease (LD, OMIM #254780) is a rare, recessively inherited neurodegenerative disease with adolescent onset, resulting in progressive myoclonus epilepsy which is fatal usually within ten years of symptom onset. The disease is caused by loss-of-function mutations in either of the two genes EPM2A (laforin) or EPM2B (malin). It characteristically involves the accumulation of insoluble glycogen-derived particles, named Lafora bodies (LBs), which are considered neurotoxic and causative of the disease. The pathogenesis of LD is therefore centred on the question of how insoluble LBs emerge from soluble glycogen. Recent data clearly show that an abnormal glycogen chain length distribution, but neither hyperphosphorylation nor impairment of general autophagy, strictly correlates with glycogen accumulation and the presence of LBs. This review summarizes results obtained with patients, mouse models, and cell lines and consolidates apparent paradoxes in the LD literature. Based on the growing body of evidence, it proposes that LD is predominantly caused by an impairment in chain-length regulation affecting only a small proportion of the cellular glycogen. A better grasp of LD pathogenesis will further develop our understanding of glycogen metabolism and structure. It will also facilitate the development of clinical interventions that appropriately target the underlying cause of LD. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1080 KW - lafora disease KW - laforin KW - malin KW - polyglucosan body KW - chain length distribution KW - glycogen phosphorylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474622 SN - 1866-8372 IS - 1080 ER - TY - JOUR A1 - Cencil, Ugo A1 - Nitschke, Felix A1 - Steup, Martin A1 - Minassian, Berge A. A1 - Colleoni, Christophe A1 - Ball, Steven G. T1 - Transition from glycogen to starch metabolism in Archaeplastida JF - Trends in plant science N2 - In this opinion article we propose a scenario detailing how two crucial components have evolved simultaneously to ensure the transition of glycogen to starch in the cytosol of the Archaeplastida last common ancestor: (i) the recruitment of an enzyme from intracellular Chlamydiae pathogens to facilitate crystallization of alpha-glucan chains; and (ii) the evolution of novel types of polysaccharide (de)phosphorylating enzymes from preexisting glycogen (de)phosphorylation host pathways to allow the turnover of such crystals. We speculate that the transition to starch benefitted Archaeplastida in three ways: more carbon could be packed into osmotically inert material; the host could resume control of carbon assimilation from the chlamydial pathogen that triggered plastid endosymbiosis; and cyanobacterial photosynthate export could be integrated in the emerging Archaeplastida. KW - evolution of plastids KW - starch and glycogen metabolism KW - polyglucan debranching reactions KW - starch and glycogen (de)phosphorylation KW - Chlamydia-like bacteria KW - Lafora disease Y1 - 2014 U6 - https://doi.org/10.1016/j.tplants.2013.08.004 SN - 1360-1385 VL - 19 IS - 1 SP - 18 EP - 28 PB - Elsevier CY - London ER - TY - THES A1 - Nitschke, Felix T1 - Phosphorylation of polyglycans, especially glycogen and starch T1 - Phosphorylierung von Polysacchariden, insbesondere bei Glykogen und Stärke N2 - Functional metabolism of storage carbohydrates is vital to plants and animals. The water-soluble glycogen in animal cells and the amylopectin which is the major component of water-insoluble starch granules residing in plant plastids are chemically similar as they consist of α-1,6 branched α-1,4 glucan chains. Synthesis and degradation of transitory starch and of glycogen are accomplished by a set of enzymatic activities that to some extend are also similar in plants and animals. Chain elongation, branching, and debranching are achieved by synthases, branching enzymes, and debranching enzymes, respectively. Similarly, both types of polyglucans contain low amounts of phosphate esters whose abundance varies depending on species and organs. Starch is selectively phosphorylated by at least two dikinases (GWD and PWD) at the glucosyl carbons C6 and C3 and dephosphorylated by the phosphatase SEX4 and SEX4-like enzymes. In Arabidopsis insufficiency in starch phosphorylation or dephosphorylation results in largely impaired starch turnover, starch accumulation, and often in retardation of growth. In humans the progressive neurodegenerative epilepsy, Lafora disease, is the result of a defective enzyme (laforin) that is functional equivalent to the starch phosphatase SEX4 and capable of glycogen dephosphorylation. Patients lacking laforin progressively accumulate unphysiologically structured insoluble glycogen-derived particles (Lafora bodies) in many tissues including brain. Previous results concerning the carbon position of glycogen phosphate are contradictory. Currently it is believed that glycogen is esterified exclusively at the carbon positions C2 and C3 and that the monophosphate esters, being incorporated via a side reaction of glycogen synthase (GS), lack any specific function but are rather an enzymatic error that needs to be corrected. In this study a versatile and highly sensitive enzymatic cycling assay was established that enables quantification of very small G6P amounts in the presence of high concentrations of non-target compounds as present in hydrolysates of polysaccharides, such as starch, glycogen, or cytosolic heteroglycans in plants. Following validation of the G6P determination by analyzing previously characterized starches G6P was quantified in hydrolysates of various glycogen samples and in plant heteroglycans. Interestingly, glucosyl C6 phosphate is present in all glycogen preparations examined, the abundance varying between glycogens of different sources. Additionally, it was shown that carbon C6 is severely hyperphosphorylated in glycogen of Lafora disease mouse model and that laforin is capable of removing C6 phosphate from glycogen. After enrichment of phosphoglucans from amylolytically degraded glycogen, several techniques of two-dimensional NMR were applied that independently proved the existence of 6-phosphoglucosyl residues in glycogen and confirmed the recently described phosphorylation sites C2 and C3. C6 phosphate is neither Lafora disease- nor species-, or organ-specific as it was demonstrated in liver glycogen from laforin-deficient mice and in that of wild type rabbit skeletal muscle. The distribution of 6-phosphoglucosyl residues was analyzed in glycogen molecules and has been found to be uneven. Gradual degradation experiments revealed that C6 phosphate is more abundant in central parts of the glycogen molecules and in molecules possessing longer glucan chains. Glycogen of Lafora disease mice consistently contains a higher proportion of longer chains while most short chains were reduced as compared to wild type. Together with results recently published (Nitschke et al., 2013) the findings of this work completely unhinge the hypothesis of GS-mediated phosphate incorporation as the respective reaction mechanism excludes phosphorylation of this glucosyl carbon, and as it is difficult to explain an uneven distribution of C6 phosphate by a stochastic event. Indeed the results rather point to a specific function of 6-phosphoglucosyl residues in the metabolism of polysaccharides as they are present in starch, glycogen, and, as described in this study, in heteroglycans of Arabidopsis. In the latter the function of phosphate remains unclear but this study provides evidence that in starch and glycogen it is related to branching. Moreover a role of C6 phosphate in the early stages of glycogen synthesis is suggested. By rejecting the current view on glycogen phosphate to be a stochastic biochemical error the results permit a wider view on putative roles of glycogen phosphate and on alternative biochemical ways of glycogen phosphorylation which for many reasons are likely to be mediated by distinct phosphorylating enzymes as it is realized in starch metabolism of plants. Better understanding of the enzymology underlying glycogen phosphorylation implies new possibilities of Lafora disease treatment. N2 - Pflanzen und Tiere speichern Glukose in hochmolekularen Kohlenhydraten, um diese bei Bedarf unter anderem zur Gewinnung von Energie zu nutzen. Amylopectin, der größte Bestandteil des pflanzlichen Speicherkohlenhydrats Stärke, und das tierische Äquivalent Glykogen sind chemisch betrachtet ähnlich, denn sie bestehen aus verzweigten Ketten, deren Bausteine (Glukosylreste) auf identische Weise miteinander verbunden sind. Zudem kommen in beiden Kohlenhydraten kleine aber ähnliche Mengen von Phosphatgruppen vor, die offenbar eine tragende Rolle in Pflanzen und Tieren spielen. Ist in Pflanzen der Einbau oder die Entfernung von Phosphatgruppen in bzw. aus Stärke gestört, so ist oft der gesamte Stärkestoffwechsel beeinträchtigt. Dies zeigt sich unter anderem in der übermäßigen Akkumulation von Stärke und in Wachstumsverzögerungen der gesamten Pflanze. Beim Menschen und anderen Säugern beruht eine schwere Form der Epilepsie (Lafora disease) auf einer Störung des Glykogenstoffwechsels. Sie wird durch das erblich bedingte Fehlen eines Enzyms ausgelöst, das Phosphatgruppen aus dem Glykogen entfernt. Während die Enzyme, die für die Entfernung des Phosphats aus Stärke und Glykogen verantwortlich sind, hohe Ähnlichkeit aufweisen, ist momentan die Ansicht weit verbreitet, dass der Einbau von Phosphat in beide Speicherkohlenhydrate auf höchst unterschiedliche Weise erfolgt. In Pflanzen sind zwei Enzyme bekannt, die Phosphatgruppen an unterschiedlichen Stellen in Glukosylreste einbauen (Kohlenstoffatome 6 und 3). In Tieren soll eine seltene, unvermeidbare und zufällig auftretende Nebenreaktion eines Enzyms, das eigentlich die Ketten des Glykogens verlängert (Glykogen-Synthase), den Einbau von Phosphat bewirken, der somit als unwillkürlich gilt und weithin als „biochemischer Fehler“ (mit fatalen Konsequenzen bei ausbleibender Korrektur) betrachtet wird. In den Glukosylresten des Glykogens sollen ausschließlich die C-Atome 2 und 3 phosphoryliert sein. Die Ergebnisse dieser Arbeit zeigen mittels zweier unabhängiger Methoden, dass Glykogen auch am Glukosyl-Kohlenstoff 6 phosphoryliert ist, der Phosphatposition, die in der Stärke am häufigsten vorkommt. Die Tatsache, dass in dieser Arbeit Phosphat neben Stärke auch erstmals an Glukosylresten von anderen pflanzlichen Kohlenhydraten (wasserlösliche Heteroglykane) nachgewiesen werden konnte, lässt vermuten, dass Phosphorylierung ein generelles Phänomen bei Polysacchariden ist. Des Weiteren wiesen die Ergebnisse darauf hin, dass Phosphat im Glykogen, wie auch in der Stärke, einem bestimmten Zweck dient, der im Zusammenhang mit der Regulation von Kettenverzweigung steht, und dass kein zufälliges biochemisches Ereignis für den Einbau verantwortlich sein kann. Aufgrund der grundlegenden Ähnlichkeiten im Stärke- und Glykogenstoffwechsel, liegt es nahe, dass die Phosphorylierung von Glykogen, ähnlich der von Stärke, ebenfalls durch spezifische Enzyme bewirkt wird. Ein besseres Verständnis der Mechanismen, die der Glykogen-Phosphorylierung zugrunde liegen, kann neue Möglichkeiten der Behandlung von Lafora disease aufzeigen. KW - Stärke KW - Glykogen KW - Phosphorylierung KW - NMR KW - Lafora disease KW - starch KW - glycogen KW - phosphorylation KW - NMR KW - Lafora disease Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-67396 ER - TY - JOUR A1 - Nitschke, Felix A1 - Wang, Peixiang A1 - Schmieder, Peter A1 - Girard, Jean-Marie A1 - Awrey, Donald E. A1 - Wang, Tony A1 - Israelian, Johan A1 - Zhao, XiaoChu A1 - Turnbull, Julie A1 - Heydenreich, Matthias A1 - Kleinpeter, Erich A1 - Steup, Martin A1 - Minassian, Berge A. T1 - Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy lafora disease JF - Cell metabolism N2 - Laforin or malin deficiency causes Lafora disease, characterized by altered glycogen metabolism and teenage-onset neurodegeneration with intractable and invariably fatal epilepsy. Plant starches possess small amounts of metabolically essential monophosphate esters. Glycogen contains similar phosphate amounts, which are thought to originate from a glycogen synthase error side reaction and therefore lack any specific function. Glycogen is also believed to lack monophosphates at glucosyl carbon C6, an essential phosphorylation site in plant starch metabolism. We now show that glycogen phosphorylation is not due to a glycogen synthase side reaction, that C6 is a major glycogen phosphorylation site, and that C6 monophosphates predominate near centers of glycogen molecules and positively correlate with glycogen chain lengths. Laforin or malin deficiency causes C6 hyperphosphorylation, which results in malformed long-chained glycogen that accumulates in many tissues, causing neurodegeneration in brain. Our work advances the understanding of Lafora disease pathogenesis and suggests that glycogen phosphorylation has important metabolic function. Y1 - 2013 U6 - https://doi.org/10.1016/j.cmet.2013.04.006 SN - 1550-4131 SN - 1932-7420 VL - 17 IS - 5 SP - 756 EP - 767 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Schmieder, Peter A1 - Nitschke, Felix A1 - Steup, Martin A1 - Mallow, Keven A1 - Specker, Edgar T1 - Determination of glucan phosphorylation using heteronuclear H-1,C-13 double and H-1,C-13,P-31 triple-resonance NMR spectra JF - Magnetic resonance in chemistry N2 - Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear H-1,C-13 and H-1,C-13,P-31 techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. KW - heteronuclear NMR KW - triple resonance KW - phosphorylation KW - starch Y1 - 2013 U6 - https://doi.org/10.1002/mrc.3996 SN - 0749-1581 VL - 51 IS - 10 SP - 655 EP - 661 PB - Wiley-Blackwell CY - Hoboken ER -