TY - GEN A1 - Kleuser, Burkhard T1 - The enigma of sphingolipids in health and disease T2 - International journal of molecular sciences Y1 - 2018 U6 - https://doi.org/10.3390/ijms19103126 SN - 1422-0067 VL - 19 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kleuser, Burkhard T1 - Divergent role of sphingosine 1-phosphate in liver health and disease JF - International journal of molecular sciences N2 - Two decades ago, sphingosine 1-phosphate (S1P) was discovered as a novel bioactive molecule that regulates a variety of cellular functions. The plethora of S1P-mediated effects is due to the fact that the sphingolipid not only modulates intracellular functions but also acts as a ligand of G protein-coupled receptors after secretion into the extracellular environment. In the plasma, S1P is found in high concentrations, modulating immune cell trafficking and vascular endothelial integrity. The liver is engaged in modulating the plasma S1P content, as it produces apolipoprotein M, which is a chaperone for the S1P transport. Moreover, the liver plays a substantial role in glucose and lipid homeostasis. A dysfunction of glucose and lipid metabolism is connected with the development of liver diseases such as hepatic insulin resistance, non-alcoholic fatty liver disease, or liver fibrosis. Recent studies indicate that S1P is involved in liver pathophysiology and contributes to the development of liver diseases. In this review, the current state of knowledge about S1P and its signaling in the liver is summarized with a specific focus on the dysregulation of S1P signaling in obesity-mediated liver diseases. Thus, the modulation of S1P signaling can be considered as a potential therapeutic target for the treatment of hepatic diseases. KW - sphingolipids KW - sphingosine kinase KW - fibrosis KW - non-alcoholic fatty liver disease KW - insulin resistance KW - liver fibrosis Y1 - 2018 U6 - https://doi.org/10.3390/ijms19030722 SN - 1422-0067 VL - 19 IS - 3 PB - MDPI CY - Basel ER - TY - GEN A1 - Giulbudagian, Michael A1 - Yealland, Guy A1 - Hönzke, Stefan A1 - Edlich, Alexander A1 - Geisendörfer, Birte A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah A1 - Calderón, Marcelo T1 - Breaking the barrier BT - potent anti-inflammatory activity following efficient topical delivery of etanercept using thermoresponsive nanogels T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems. Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNF alpha binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFa fusion protein etanercept (ETR) (similar to 150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application. Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1030 KW - thermoresponsive-nanogel KW - topical KW - anti-inflammatory therapy KW - etanercept KW - skin equivalents Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459301 SN - 1866-8372 IS - 1030 SP - 450 EP - 463 ER - TY - GEN A1 - Kleuser, Burkhard T1 - Divergent role of sphingosine 1-phosphate in liver health and disease T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Two decades ago, sphingosine 1-phosphate (S1P) was discovered as a novel bioactive molecule that regulates a variety of cellular functions. The plethora of S1P-mediated effects is due to the fact that the sphingolipid not only modulates intracellular functions but also acts as a ligand of G protein-coupled receptors after secretion into the extracellular environment. In the plasma, S1P is found in high concentrations, modulating immune cell trafficking and vascular endothelial integrity. The liver is engaged in modulating the plasma S1P content, as it produces apolipoprotein M, which is a chaperone for the S1P transport. Moreover, the liver plays a substantial role in glucose and lipid homeostasis. A dysfunction of glucose and lipid metabolism is connected with the development of liver diseases such as hepatic insulin resistance, non-alcoholic fatty liver disease, or liver fibrosis. Recent studies indicate that S1P is involved in liver pathophysiology and contributes to the development of liver diseases. In this review, the current state of knowledge about S1P and its signaling in the liver is summarized with a specific focus on the dysregulation of S1P signaling in obesity-mediated liver diseases. Thus, the modulation of S1P signaling can be considered as a potential therapeutic target for the treatment of hepatic diseases. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1051 KW - sphingolipids KW - sphingosine kinase KW - fibrosis KW - non-alcoholic fatty liver disease KW - insulinresistance KW - liver fibrosis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474398 SN - 1866-8372 IS - 1051 ER - TY - GEN A1 - Kleuser, Burkhard T1 - The enigma of sphingolipids in health and disease T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1040 KW - sphingosine-1-phosphate Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472637 SN - 1866-8372 IS - 1040 ER - TY - JOUR A1 - Edlich, Alexander A1 - Volz, Pierre A1 - Brodwolf, Robert A1 - Unbehauen, Michael A1 - Mundhenk, Lars A1 - Gruber, Achim D. A1 - Hedtrich, Sarah A1 - Haag, Rainer A1 - Alexiev, Ulrike A1 - Kleuser, Burkhard T1 - Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin JF - Biomaterials : biomaterials reviews online N2 - Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment. (C) 2018 Elsevier Ltd. All rights reserved. KW - Core-multishell nanocarriers KW - Fluorescence lifetime imaging microscopy KW - Langerhans cells KW - Nanoparticle uptake KW - Nanotoxicology Y1 - 2018 U6 - https://doi.org/10.1016/j.biomaterials.2018.01.058 SN - 0142-9612 SN - 1878-5905 VL - 162 SP - 60 EP - 70 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Prehn, Cornelia A1 - von Websky, Karoline A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Yin, Liang-Hong A1 - Kleuser, Burkhard A1 - Yang, Xue-Song A1 - Adamski, Jerzy A1 - Hocher, Berthold T1 - Fetal serum metabolites are independently associated with Gestational diabetes mellitus JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel KW - Gestational diabetes KW - Metabolomics KW - Phosphatidylcholine acyl-alkyl C 32:1 KW - Proline Y1 - 2018 U6 - https://doi.org/10.1159/000487119 SN - 1015-8987 SN - 1421-9778 VL - 45 IS - 2 SP - 625 EP - 638 PB - Karger CY - Basel ER - TY - JOUR A1 - Giulbudagian, Michael A1 - Yealland, Guy A1 - Hönzke, S. A1 - Edlich, A. A1 - Geisendörfer, Birte A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah A1 - Calderon, Marcelo T1 - Breaking the Barrier BT - potent anti-inflammatory activity following efficient topical delivery of etanercept using thermoresponsive nanogels JF - Theranostics N2 - Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems. Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNF alpha binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFa fusion protein etanercept (ETR) (similar to 150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application. Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin. KW - thermoresponsive-nanogel KW - topical KW - anti-inflammatory therapy KW - etanercept KW - skin equivalents Y1 - 2018 U6 - https://doi.org/10.7150/thno.21668 SN - 1838-7640 VL - 8 IS - 2 SP - 450 EP - 463 PB - Ivyspring International Publisher CY - Lake haven ER - TY - JOUR A1 - Nitezki, Tina A1 - Kleuser, Burkhard A1 - Krämer, Stephanie T1 - Fatal gastric distension in a gold thioglucose mouse model of obesity JF - Laboratory Animals N2 - This case report addresses the problem of underreporting negative results and adverse side effects in animal testing. We present our findings regarding a hyperphagic mouse model associated with unforeseen high mortality. The results outline the necessity of reporting detailed information in the literature to avoid duplication. Obese mouse models are essential in the study of obesity, metabolic syndrome and diabetes mellitus. An experimental model of obesity can be induced by the administration of gold thioglucose (GTG). After transcending the blood-brain barrier, the GTG molecule interacts with regions of the ventromedial hypothalamus, thereby primarily targeting glucose-sensitive neurons. When these neurons are impaired, mice become insensitive to the satiety effects of glucose and develop hyperphagia. In a pilot study for optimising dosage and body weight development, C57BL/6 mice were treated with GTG (0.5 mg/g body weight) or saline, respectively. Animals were provided a physiological amount of standard diet (5 g per animal) for the first 24 hours after treatment to prevent gastric dilatation. Within 24 hours after GTG injection, all GTG-treated animals died of gastric overload and subsequent circulatory shock. Animals developed severe attacks of hyperphagia, and as the amount of provided chow was restricted, mice exhibited unforeseen pica and ingested bedding material. These observations strongly suggest that restricted feeding is contraindicated concerning GTG application. Presumably, the impulse of excessive food intake was a strong driving force. Therefore, the actual degree of suffering in the GTG-induced model of hyperphagia should be revised from moderate to severe. KW - appetite KW - distress KW - refinement KW - mortality Y1 - 2018 U6 - https://doi.org/10.1177/0023677218803384 SN - 0023-6772 SN - 1758-1117 VL - 53 IS - 1 SP - 89 EP - 94 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Becker, Katrin Anne A1 - Riethmueller, Joachim A1 - Seitz, Aaron P. A1 - Gardner, Aaron A1 - Boudreau, Ryan A1 - Kamler, Markus A1 - Kleuser, Burkhard A1 - Schuchman, Edward A1 - Caldwell, Charles C. A1 - Edwards, Michael J. A1 - Grassme, Heike A1 - Brodlie, Malcolm A1 - Gulbins, Erich T1 - Sphingolipids as targets for inhalation treatment of cystic fibrosis JF - Advanced drug delivery reviews N2 - Studies over the past several years have demonstrated the important role of sphingolipids in cystic fibrosis (CF), chronic obstructive pulmonary disease and acute lung injury. Ceramide is increased in airway epithelial cells and alveolar macrophages of CF mice and humans, while sphingosine is dramatically decreased. This increase in ceramide results in chronic inflammation, increased death of epithelial cells, release of DNA into the bronchial lumen and thereby an impairment of mucociliary clearance; while the lack of sphingosine in airway epithelial cells causes high infection susceptibility in CF mice and possibly patients. The increase in ceramide mediates an ectopic expression of beta 1-integrins in the luminal membrane of CF epithelial cells, which results, via an unknown mechanism, in a down-regulation of acid ceramidase. It is predominantly this down-regulation of acid ceramidase that results in the imbalance of ceramide and sphingosine in CF cells. Correction of ceramide and sphingosine levels can be achieved by inhalation of functional acid sphingomyelinase inhibitors, recombinant acid ceramidase or by normalization of beta 1-integrin expression and subsequent re-expression of endogenous acid ceramidase. These treatments correct pulmonary inflammation and prevent or treat, respectively, acute and chronic pulmonary infections in CF mice with Staphylococcus aureus and mucoid or non-mucoid Pseudomonas aeruginosa. Inhalation of sphingosine corrects sphingosine levels only and seems to mainly act against the infection. Many antidepressants are functional inhibitors of the acid sphingomyelinase and were designed for systemic treatment of major depression. These drugs could be repurposed to treat CF by inhalation. KW - Ceramide KW - Acid sphingomyelinase KW - Cystic fibrosis KW - COPD KW - Inhalation Y1 - 2018 U6 - https://doi.org/10.1016/j.addr.2018.04.015 SN - 0169-409X SN - 1872-8294 VL - 133 SP - 66 EP - 75 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Prehn, Cornelia A1 - von Websky, Karoline A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Yin, Liang-Hong A1 - Kleuser, Burkhard A1 - Yang, Xue-Song A1 - Adamski, Jerzy A1 - Hocher, Berthold T1 - Fetal serum metabolites are independently associated with Gestational diabetes mellitus T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 637 KW - Gestational diabetes KW - metabolomics KW - phosphatidylcholine acyl-alkyl C 32:1 KW - proline Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424585 SN - 1866-8372 IS - 637 ER - TY - JOUR A1 - Giulbudagian, Michael A1 - Hönzke, Stefan A1 - Bergueiro, Julián A1 - Işık, Doğuş A1 - Schumacher, Fabian A1 - Saeidpour, Siavash A1 - Lohan, Silke A1 - Meinke, Martina A1 - Teutloff, Christian A1 - Schäfer-Korting, Monika A1 - Yealland, Guy A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah A1 - Calderón, Marcelo T1 - Enhanced topical delivery of dexamethasone by beta-cyclodextrin decorated thermoresponsive nanogels JF - Nanoscale N2 - Highly hydrophilic, responsive nanogels are attractive as potential systems for the topical delivery of bioactives encapsulated in their three-dimensional polymeric scaffold. Yet, these drug carrier systems suffer from drawbacks for efficient delivery of hydrophobic drugs. Addressing this, β-cyclodextrin (βCD) could be successfully introduced into the drug carrier systems by exploiting its unique affinity toward dexamethasone (DXM) as well as its role as topical penetration enhancer. The properties of βCD could be combined with those of thermoresponsive nanogels (tNGs) based on dendritic polyglycerol (dPG) as a crosslinker and linear thermoresponsive polyglycerol (tPG) inducing responsiveness to temperature changes. Electron paramagnetic resonance (EPR) studies localized the drug within the hydrophobic cavity of βCD by differences in its mobility and environmental polarity. In fact, the fabricated carriers combining a particulate delivery system with a conventional penetration enhancer, resulted in an efficient delivery of DXM to the epidermis and the dermis of human skin ex vivo (enhancement compared to commercial DXM cream: ∼2.5 fold in epidermis, ∼30 fold in dermis). Furthermore, DXM encapsulated in βCD tNGs applied to skin equivalents downregulated the expression of proinflammatory thymic stromal lymphopoietin (TSLP) and outperformed a commercially available DXM cream. Y1 - 2017 U6 - https://doi.org/10.1039/c7nr04480a SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 1 SP - 469 EP - 479 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Beckmann, Nadine A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Goethert, Joachim R. A1 - Kesper, Stefanie A1 - Draeger, Annette A1 - Schulz-Schaeffer, Walter J. A1 - Wang, Jiang A1 - Becker, Jan U. A1 - Kramer, Melanie A1 - Kuehn, Claudine A1 - Kleuser, Burkhard A1 - Becker, Katrin Anne A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Pathological manifestations of Farber disease in a new mouse model JF - Biological chemistry N2 - Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1(tmEx1) mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies. KW - acid ceramidase KW - ceramide KW - Farber disease KW - lysosomal storage disorders Y1 - 2018 U6 - https://doi.org/10.1515/hsz-2018-0170 SN - 1431-6730 SN - 1437-4315 VL - 399 IS - 10 SP - 1183 EP - 1202 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Wienhold, Sandra-Maria A1 - Macri, Mario A1 - Nouailles, Geraldine A1 - Dietert, Kristina A1 - Gurtner, Corinne A1 - Gruber, Achim D. A1 - Heimesaat, Markus M. A1 - Lienau, Jasmin A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Opitz, Bastian A1 - Suttorp, Norbert A1 - Witzenrath, Martin A1 - Müller-Redetzky, Holger C. T1 - Ventilator-induced lung injury is aggravated by antibiotic mediated microbiota depletion in mice JF - Critical Care N2 - BackgroundAntibiotic exposure alters the microbiota, which can impact the inflammatory immune responses. Critically ill patients frequently receive antibiotic treatment and are often subjected to mechanical ventilation, which may induce local and systemic inflammatory responses and development of ventilator-induced lung injury (VILI). The aim of this study was to investigate whether disruption of the microbiota by antibiotic therapy prior to mechanical ventilation affects pulmonary inflammatory responses and thereby the development of VILI.MethodsMice underwent 6-8weeks of enteral antibiotic combination treatment until absence of cultivable bacteria in fecal samples was confirmed. Control mice were housed equally throughout this period. VILI was induced 3 days after completing the antibiotic treatment protocol, by high tidal volume (HTV) ventilation (34ml/kg; positive end-expiratory pressure=2 cmH(2)O) for 4h. Differences in lung function, oxygenation index, pulmonary vascular leakage, macroscopic assessment of lung injury, and leukocyte and lymphocyte differentiation were assessed. Control groups of mice ventilated with low tidal volume and non-ventilated mice were analyzed accordingly.ResultsAntibiotic-induced microbiota depletion prior to HTV ventilation led to aggravation of VILI, as shown by increased pulmonary permeability, increased oxygenation index, decreased pulmonary compliance, enhanced macroscopic lung injury, and increased cytokine/chemokine levels in lung homogenates.ConclusionsDepletion of the microbiota by broad-spectrum antibiotics prior to HTV ventilation renders mice more susceptible to developing VILI, which could be clinically relevant for critically ill patients frequently receiving broad-spectrum antibiotics. KW - Broad-spectrum antibiotic therapy KW - Ventilator-induced lung injury KW - Microbiota Y1 - 2018 U6 - https://doi.org/10.1186/s13054-018-2213-8 SN - 1466-609X SN - 1364-8535 VL - 22 IS - 282 PB - BMC CY - London ER - TY - JOUR A1 - Müller, S. M. A1 - Finke, Hannah A1 - Ebert, Franziska A1 - Kopp, Johannes Florian A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Francesconi, Kevin A. A1 - Raber, G. A1 - Schwerdtle, Tanja T1 - Arsenic-containing hydrocarbons BT - effects on gene expression, epigenetics, and biotransformation in HepG2 cells JF - Archives of toxicology : official journal of EUROTOX N2 - Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids found in fish and algae, elicit substantial toxic effects in various human cell lines and have a considerable impact on cellular energy levels. The underlying mode of action, however, is still unknown. The present study analyzes the effects of two AsHCs (AsHC 332 and AsHC 360) on the expression of 44 genes covering DNA repair, stress response, cell death, autophagy, and epigenetics via RT-qPCR in human liver (HepG2) cells. Both AsHCs affected the gene expression, but to different extents. After treatment with AsHC 360, flap structure-specific endonuclease 1 (FEN1) as well as xeroderma pigmentosum group A complementing protein (XPA) and (cytosine-5)-methyltransferase 3A (DNMT3A) showed time- and concentration-dependent alterations in gene expression, thereby indicating an impact on genomic stability. In the subsequent analysis of epigenetic markers, within 72 h, neither AsHC 332 nor AsHC 360 showed an impact on the global DNA methylation level, whereas incubation with AsHC 360 increased the global DNA hydroxymethylation level. Analysis of cell extracts and cell media by HPLC-mass spectrometry revealed that both AsHCs were considerably biotransformed. The identified metabolites include not only the respective thioxo-analogs of the two AsHCs, but also several arsenic-containing fatty acids and fatty alcohols, contributing to our knowledge of biotransformation mechanisms of arsenolipids. KW - Arsenolipids KW - Gene expression KW - Arsenic-containing hydrocarbons KW - Global DNA methylation KW - Arsenic speciation KW - Metabolism Y1 - 2018 U6 - https://doi.org/10.1007/s00204-018-2194-z SN - 0340-5761 SN - 1432-0738 VL - 92 IS - 5 SP - 1751 EP - 1765 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Gulbins, Anne A1 - Schumacher, Fabian A1 - Becker, Katrin Anne A1 - Wilker, Barbara A1 - Soddemann, Matthias A1 - Boldrin, Francesco A1 - Müller, Christian P. A1 - Edwards, Michael J. A1 - Goodman, Michael A1 - Caldwell, Charles C. A1 - Kleuser, Burkhard A1 - Kornhuber, Johannes A1 - Szabo, Ildiko A1 - Gulbins, Erich T1 - Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide JF - Molecular psychiatry N2 - Major depressive disorder (MDD) is a common and severe disease characterized by mood changes, somatic alterations, and often suicide. MDD is treated with antidepressants, but the molecular mechanism of their action is unknown. We found that widely used antidepressants such as amitriptyline and fluoxetine induce autophagy in hippocampal neurons via the slow accumulation of sphingomyelin in lysosomes and Golgi membranes and of ceramide in the endoplasmic reticulum (ER). ER ceramide stimulates phosphatase 2A and thereby the autophagy proteins Ulk, Beclin, Vps34/Phosphatidylinositol 3-kinase, p62, and Lc3B. Although treatment with amitriptyline or fluoxetine requires at least 12 days to achieve sphingomyelin accumulation and the subsequent biochemical and cellular changes, direct inhibition of sphingomyelin synthases with tricyclodecan-9-yl-xanthogenate (D609) results in rapid (within 3 days) accumulation of ceramide in the ER, activation of autophagy, and reversal of biochemical and behavioral signs of stress-induced MDD. Inhibition of Beclin blocks the antidepressive effects of amitriptyline and D609 and induces cellular and behavioral changes typical of MDD. These findings identify sphingolipid-controlled autophagy as an important target for antidepressive treatment methods and provide a rationale for the development of novel antidepressants that act within a few days. Y1 - 2018 U6 - https://doi.org/10.1038/s41380-018-0090-9 SN - 1359-4184 SN - 1476-5578 VL - 23 IS - 12 SP - 2324 EP - 2346 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zabihi, Fatemeh A1 - Graff, Patrick A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah A1 - Haag, Rainer T1 - Synthesis of poly(lactide-co-glycerol) as a biodegradable and biocompatible polymer with high loading capacity for dermal drug delivery JF - Nanoscale N2 - Due to the low cutaneous bioavailability of tacrolimus (TAC), penetration enhancers are used to improve its penetration into the skin. However, poor loading capacity, non-biodegradability, toxicity, and in some cases inefficient skin penetration are challenging issues that hamper their applications for the dermal TAC delivery. Here we present poly(lactide-co-glycerol) (PLG) as a water soluble, biodegradable, and biocompatible TAC-carrier with high loading capacity (14.5% w/w for TAC) and high drug delivery efficiencies into the skin. PLG was synthesized by cationic ring-opening copolymerization of a mixture of glycidol and lactide and showed 35 nm and 300 nm average sizes in aqueous solutions before and after loading of TAC, respectively. Delivery experiments on human skin, quantified by fluorescence microscopy and LC-MS/MS, showed a high ability for PLG to deposit Nile red and TAC into the stratum corneum and viable epidermis of skin in comparison with Protopic (R) (0.03% w/w, TAC ointment). The cutaneous distribution profile of delivered TAC proved that 80%, 16%, and 4% of the cutaneous drug level was deposited in the stratum corneum, viable epidermis, and upper dermis, respectively. TAC delivered by PLG was able to efficiently decrease the IL-2 and TSLP expressions in human skin models. Taking advantage of the excellent physicochemical and biological properties of PLG, it can be used for efficient dermal TAC delivery and potential treatment of inflammatory skin diseases. Y1 - 2018 U6 - https://doi.org/10.1039/c8nr05536j SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 35 SP - 16848 EP - 16856 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Schwerbel, Kristin A1 - Kamitz, Anne A1 - Jaehnert, Markus A1 - Gottmann, P. A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Haltenhof, T. A1 - Heyd, F. A1 - Roden, Michael A1 - Chadt, Alexandra A1 - Al-Hasani, Hadi A1 - Jonas, W. A1 - Vogel, Heike A1 - Schürmann, Annette T1 - Two immune-related GTPases prevent from hepatic fat accumulation by inducing autophagy T2 - Diabetologia : journal of the European Association for the Study of Diabetes (EASD) Y1 - 2018 SN - 0012-186X SN - 1432-0428 VL - 61 SP - S259 EP - S259 PB - Springer CY - New York ER - TY - JOUR A1 - Gutbier, Birgitt A1 - Schönrock, Stefanie M. A1 - Ehrler, Carolin A1 - Haberberger, Rainer A1 - Dietert, Kristina A1 - Gruber, Achim D. A1 - Kummer, Wolfgang A1 - Michalick, Laura A1 - Kuebler, Wolfgang M. A1 - Hocke, Andreas C. A1 - Szymanski, Kolja A1 - Letsiou, Eleftheria A1 - Lüth, Anja A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Mitchell, Timothy J. A1 - Bertrams, Wilhelm A1 - Schmeck, Bernd A1 - Treue, Denise A1 - Klauschen, Frederick A1 - Bauer, Torsten T. A1 - Tönnies, Mario A1 - Weissmann, Norbert A1 - Hippenstiel, Stefan A1 - Suttorp, Norbert A1 - Witzenrath, Martin T1 - Sphingosine Kinase 1 Regulates Inflammation and Contributes to Acute Lung Injury in Pneumococcal Pneumonia via the Sphingosine-1-Phosphate Receptor 2 JF - Critical care medicine N2 - Objectives: Severe pneumonia may evoke acute lung injury, and sphingosine-1-phosphate is involved in the regulation of vascular permeability and immune responses. However, the role of sphingosine-1-phosphate and the sphingosine-1-phosphate producing sphingosine kinase 1 in pneumonia remains elusive. We examined the role of the sphingosine-1-phosphate system in regulating pulmonary vascular barrier function in bacterial pneumonia. Design: Controlled, in vitro, ex vivo, and in vivo laboratory study. Subjects: Female wild-type and SphK1-deficient mice, 8-10 weeks old. Human postmortem lung tissue, human blood-derived macrophages, and pulmonary microvascular endothelial cells. Interventions: Wild-type and SphK1-deficient mice were infected with Streptococcus pneumoniae. Pulmonary sphingosine-1-phosphate levels, messenger RNA expression, and permeability as well as lung morphology were analyzed. Human blood-derived macrophages and human pulmonary microvascular endothelial cells were infected with S. pneumoniae. Transcellular electrical resistance of human pulmonary microvascular endothelial cell monolayers was examined. Further, permeability of murine isolated perfused lungs was determined following exposition to sphingosine-1-phosphate and pneumolysin. Measurements and Main Results: Following S. pneumoniae infection, murine pulmonary sphingosine-1-phosphate levels and sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 expression were increased. Pneumonia-induced lung hyperpermeability was reduced in SphK1(-/-) mice compared with wild-type mice. Expression of sphingosine kinase 1 in macrophages recruited to inflamed lung areas in pneumonia was observed in murine and human lungs. S. pneumoniae induced the sphingosine kinase 1/sphingosine-1-phosphate system in blood-derived macrophages and enhanced sphingosine-1-phosphate receptor 2 expression in human pulmonary microvascular endothelial cell in vitro. In isolated mouse lungs, pneumolysin-induced hyperpermeability was dose dependently and synergistically increased by sphingosine-1-phosphate. This sphingosine-1-phosphate-induced increase was reduced by inhibition of sphingosine-1-phosphate receptor 2 or its downstream effector Rho-kinase. Conclusions: Our data suggest that targeting the sphingosine kinase 1-/sphingosine-1-phosphate-/sphingosine-1-phosphate receptor 2-signaling pathway in the lung may provide a novel therapeutic perspective in pneumococcal pneumonia for prevention of acute lung injury. KW - acute lung injury KW - pneumococcal pneumonia KW - sphingosine kinase 1 KW - sphingosine-1-phosphate KW - sphingosine-1-phosphate receptor 2 Y1 - 2018 U6 - https://doi.org/10.1097/CCM.0000000000002916 SN - 0090-3493 SN - 1530-0293 VL - 46 IS - 3 SP - e258 EP - e267 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - GEN A1 - Reichel, Martin A1 - Rhein, Cosima A1 - Hofmann, Lena M. A1 - Monti, Juliana A1 - Japtok, Lukasz A1 - Langgartner, Dominik A1 - Füchsl, Andrea M. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Hellerbrand, Claus A1 - Reber, Stefan O. A1 - Kornhuber, Johannes T1 - Chronic psychosocial stress in mice is associated with increased acid sphingomyelinase activity in liver and serum and with hepatic C16:0-ceramide accumulation T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1120 KW - chronic psychosocial stress KW - acid sphingomyelinase KW - ceramide KW - sphingolipid metabolism KW - chronic subordinate colony housing (CSC) KW - liver metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446241 SN - 1866-8372 IS - 1120 ER - TY - JOUR A1 - Reichel, Martin A1 - Rhein, Cosima A1 - Hofmann, Lena M. A1 - Monti, Juliana A1 - Japtok, Lukasz A1 - Langgartner, Dominik A1 - Füchsl, Andrea M. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Hellerbrand, Claus A1 - Reber, Stefan O. A1 - Kornhuber, Johannes T1 - Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation JF - Frontiers in Psychiatry N2 - Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders. KW - chronic psychosocial stress KW - acid sphingomyelinase KW - ceramide KW - sphingolipid metabolism KW - chronic subordinate colony housing (CSC) KW - liver metabolism Y1 - 2018 U6 - https://doi.org/10.3389/fpsyt.2018.00496 SN - 1664-0640 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Laeger, Thomas A1 - Castano-Martinez, Teresa A1 - Werno, Martin W. A1 - Japtok, Lukasz A1 - Baumeier, Christian A1 - Jonas, Wenke A1 - Kleuser, Burkhard A1 - Schürmann, Annette T1 - Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes JF - Diabetologia : journal of the European Association for the Study of Diabetes (EASD) N2 - Aims/hypothesis Low-protein diets are well known to improve glucose tolerance and increase energy expenditure. Increases in circulating fibroblast growth factor 21 (FGF21) have been implicated as a potential underlying mechanism. Methods We aimed to test whether low-protein diets in the context of a high-carbohydrate or high-fat regimen would also protect against type 2 diabetes in New Zealand Obese (NZO) mice used as a model of polygenetic obesity and type 2 diabetes. Mice were placed on high-fat diets that provided protein at control (16 kJ%; CON) or low (4 kJ%; low-protein/high-carbohydrate [LP/HC] or low-protein/high-fat [LP/HF]) levels. Results Protein restriction prevented the onset of hyperglycaemia and beta cell loss despite increased food intake and fat mass. The effect was seen only under conditions of a lower carbohydrate/fat ratio (LP/HF). When the carbohydrate/fat ratio was high (LP/HC), mice developed type 2 diabetes despite the robustly elevated hepatic FGF21 secretion and increased energy expenditure. Conclusion/interpretation Prevention of type 2 diabetes through protein restriction, without lowering food intake and body fat mass, is compromised by high dietary carbohydrates. Increased FGF21 levels and elevated energy expenditure do not protect against hyperglycaemia and type 2 diabetes per se. KW - Energy expenditure KW - FGF21 KW - Hyperglycaemia KW - Insulin resistance KW - NZO KW - Obesity KW - Protein restriction Y1 - 2018 U6 - https://doi.org/10.1007/s00125-018-4595-1 SN - 0012-186X SN - 1432-0428 VL - 61 IS - 6 SP - 1459 EP - 1469 PB - Springer CY - New York ER -