TY - JOUR A1 - Risse, Sebastian A1 - Kussmaul, Björn A1 - Krüger, Hartmut A1 - Kofod, Guggi T1 - A versatile method for enhancement of electromechanical sensitivity of silicone elastomers JF - RSC Advances N2 - Dielectric elastomer actuators (DEAs) draw their function from their dielectric and mechanical properties. The paper describes the fabrication and various properties of molecularly grafted silicone elastomer films. This was achieved by addition of high-dipole molecular co-substituents to off-the-shelf silicone elastomer kits, Elastosil RT 625 and Sylgard 184 by Wacker and Dow Corning, respectively. Strong push-pull dipoles were chemically grafted to both polymer networks during a one step film formation process. All manufactured films were characterized using (13) C-NMR and FT-IR spectroscopy, confirming a successful attachment of the dipoles to the silicone network. Differential scanning calorimetry (DSC) results showed that grafted dipoles were distributed homogeneously throughout the material avoiding the formation of nano-scale aggregates. The permittivity increased with the amount of dipole at all frequencies, while the Young's modulus and electrical breakdown strength were reduced. Actuation strain measurements in the pure shear configuration independently confirmed the increase in electromechanical sensitivity. The ability to enhance electromechanical properties of off-the-shelf materials could strongly expand the range of actuator properties available to researchers and end-users. Y1 - 2012 U6 - https://doi.org/10.1039/c2ra21541a SN - 2046-2069 VL - 2 IS - 24 SP - 9029 EP - 9035 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Jordan, Grace A1 - McCarthy, Denis N. A1 - Schlepple, N. A1 - Krissler, Jan A1 - Schroeder, H. A1 - Kofod, Guggi T1 - Actuated micro-optical submount using a dielectric elastomer actuator JF - IEEE ASME transactions on mechatronics N2 - Analysis of the operating characteristics of a dielectric elastomer actuator (DEA) submount for the high-precision positioning of optical components in one dimension is presented. Precise alignment of a single-mode fiber is demonstrated and variation of the sensitivity of the submount motion by changing the bias voltage is confirmed. A comparison of the performance of the DEA submount with a piezoelectric alignment stage is made, which demonstrates that DEAs could present a very attractive, low-cost alternative to currently used manual technologies in overcoming the hurdle of expensive packaging of single-mode optical components. KW - Actuators KW - manufacturing automation KW - optical interconnections KW - packaging KW - position control Y1 - 2011 U6 - https://doi.org/10.1109/TMECH.2010.2089991 SN - 1083-4435 VL - 16 IS - 1 SP - 98 EP - 102 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Kofod, Guggi A1 - Risse, Sebastian A1 - Stoyanov, Hristiyan A1 - McCarthy, Denis N. A1 - Sokolov, Sergey A1 - Krähnert, Ralph T1 - Broad-spectrum enhancement of polymer composite dielectric constant at ultra low volume fractions of silica-supported copper nanoparticles JF - ACS nano N2 - A new strategy for the synthesis of high permittivity polymer composites is demonstrated based on well-defined spatial distribution of ultralow amounts of conductive nanoparticles. The spatial distribution Was realized by immobilizing Cu nanoparticles within the pore system of Alia microspheres, preventing direct contact between individual Cu particles. Both Cu-loaded and unloaded silica microspheres were-then used as fillers in polymer composites prepared with thermoplastic SEBS rubber is the matrix. With a metallic Cu content of about 0.26 vol % In the compoilte, a relative increase of 94% In real permittivity was obtained. No Cu-induced relaxations were observed in the dielectric spectrum within the studied frequency range of 0.1 Hz to 1 MHz. When related to the amount of conductive nanoparticles, the obtained composites achieve the highest broad spectrum enhancement of permittivity ever reported for a polymer based composite. KW - nanocomposite KW - broad-spectrum permittivity enhancement KW - metal nanoparticles KW - uniform spatial arrangement Y1 - 2011 U6 - https://doi.org/10.1021/nn103097q SN - 1936-0851 VL - 5 IS - 3 SP - 1623 EP - 1629 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kollosche, Matthias A1 - Zhu, Jian A1 - Suo, Zhigang A1 - Kofod, Guggi T1 - Complex interplay of nonlinear processes in dielectric elastomers JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - A combination of experiment and theory shows that dielectric elastomers exhibit complex interplay of nonlinear processes. Membranes of a dielectric elastomer are prepared in various states of prestretches by using rigid clamps and mechanical forces. Upon actuation by voltage, some membranes form wrinkles followed by snap-through instability, others form wrinkles without the snap-through instability, and still others fail by local instability without forming wrinkles. Membranes surviving these nonlinear processes are found to attain a constant dielectric strength, independent of the state of prestretches. Giant voltage-induced stretch of 3.6 is attained. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevE.85.051801 SN - 1539-3755 VL - 85 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Stoyanov, Hristiyan A1 - Mc Carthy, Denis N. A1 - Kollosche, Matthias A1 - Kofod, Guggi T1 - Dielectric properties and electric breakdown strength of a subpercolative composite of carbon black in thermoplastic copolymer N2 - We investigate the dielectric properties and electric breakdown strength of subpercolative composites of conductive carbon black particles in a rubber insulating matrix. A significant increase in the permittivity in the vicinity of the insulator to conductor transition was observed, with relatively low increases in dielectric loss; however, a rapid decrease in electric breakdown strength was inevitable. A steplike feature was ascribed to agglomeration effects. The low ultimate values of the electric field strength of such composites appear to prohibit practical use. Y1 - 2009 UR - http://apl.aip.org/ U6 - https://doi.org/10.1063/1.3154553 SN - 0003-6951 ER - TY - JOUR A1 - Stoyanov, Hristiyan A1 - Kollosche, Matthias A1 - Risse, Sebastian A1 - McCarthy, Denis N. A1 - Kofod, Guggi T1 - Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control JF - Soft matter N2 - Soft, physically crosslinking, block copolymer elastomers were filled with surface-treated nanoparticles, in order to evaluate the possibility for improvement of their properties when used as soft dielectric actuators. The nanoparticles led to improvements in dielectric properties, however they also reinforced the elastomer matrix. Comparing dielectric spectra of composites with untreated and surface-treated particles showed a measurable influence of the surface on the dielectric loss behaviour for high filler amounts, strongly indicating an improved host-guest interaction for the surface-treated particles. Breakdown strength was measured using a test bench and was found to be in good agreement with the results from the actuation measurements. Actuation responses predicted by a model for prestrained actuators agreed well with measurements up to a filler amount of 20%(vol). Strong improvements in actuation behaviour were observed, with an optimum near 15%(vol) nanoparticles, corresponding to a reduction in electrical field of 27% for identical actuation strains. The use of physically crosslinking elastomer ensured the mechanical properties of the matrix elastomer were unchanged by nanoparticles effecting the crosslinking reaction, contrary to similar experiments performed with chemically crosslinking elastomers. This allows for a firm conclusion about the positive effects of surface-treated nanoparticles on actuation behavior. Y1 - 2011 U6 - https://doi.org/10.1039/c0sm00715c SN - 1744-683X SN - 1744-6848 VL - 7 IS - 1 SP - 194 EP - 202 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Döring, Sebastian A1 - Kollosche, Matthias A1 - Rabe, Torsten A1 - Stumpe, Joachim A1 - Kofod, Guggi T1 - Electrically tunable polymer DFB laser JF - Advanced materials Y1 - 2011 U6 - https://doi.org/10.1002/adma.201102465 SN - 0935-9648 VL - 23 IS - 37 SP - 4265 EP - 4269 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kofod, Guggi A1 - Mc Carthy, Denis N. A1 - Krissler, Jan A1 - Lang, Günter A1 - Jordan, Grace T1 - Electroelastic optical fiber positioning with submicrometer accuracy : model and experiment N2 - We present accurate electromechanical measurements on a balanced push-pull dielectric elastomer actuator, demonstrating submicrometer accurate position control. An analytical model based on a simplified pure-shear dielectric elastomer film with prestretch is found to capture the voltage-displacement behavior, with reduced output due to the boundary conditions. Two complementary experiments show that actuation coefficients of 0.5-1 nm/V-2 are obtainable with the demonstrated device, enabling motion control with submicrometer accuracy in a voltage range below 200 V. Y1 - 2009 UR - http://apl.aip.org/ U6 - https://doi.org/10.1063/1.3134002 SN - 0003-6951 ER - TY - JOUR A1 - Kofod, Guggi A1 - Wirges, Werner A1 - Paajanen, Mika A1 - Bauer, Siegfried T1 - Energy minimization for self-organized structure formation and actuation N2 - An approach for creating complex structures with embedded actuation in planar manufacturing steps is presented. Self-organization and energy minimization are central to this approach, illustrated with a model based on minimization of the hyperelastic free energy strain function of a stretched elastomer and the bending elastic energy of a plastic frame. A tulip-shaped gripper structure illustrates the technological potential of the approach. Advantages are simplicity of manufacture, complexity of final structures, and the ease with which any electroactive material can be exploited as means of actuation. (c) 2007 American Institute of Physics. Y1 - 2007 UR - http://apl.aip.org/ U6 - https://doi.org/10.1063/1.2695785 SN - 0003-6951 ER - TY - JOUR A1 - Kussmaul, Bjoern A1 - Risse, Sebastian A1 - Kofod, Guggi A1 - Wache, Remi A1 - Wegener, Michael A1 - McCarthy, Denis N. A1 - Krüger, Hartmut A1 - Gerhard, Reimund T1 - Enhancement of dielectric permittivity and electromechanical response in silicone elastomers molecular grafting of organic dipoles to the macromolecular Network JF - Advanced functional materials N2 - A novel method is established for permittivity enhancement of a silicone matrix for dielectric elastomer actuators (DEAs) by molecular level modifications of the elastomer matrix. A push-pull dipole is synthesized to be compatible with the silicone crosslinking chemistry, allowing for direct grafting to the crosslinker molecules in a one-step film formation process. This method prevents agglomeration and yields elastomer films that are homogeneous down to the molecular level. The dipole-to-silicone network grafting reaction is studied by FTIR. The chemical, thermal, mechanical and electrical properties of films with dipole contents ranging from 0 wt% to 13.4 wt% were thoroughly characterized. The grafting of dipoles modifies the relative permittivity and the stiffness, resulting in the actuation strain at a given electrical field being improved by a factor of six. KW - dipole grafting KW - silicone based dielectric elastomer actuators KW - permittivity enhancement Y1 - 2011 U6 - https://doi.org/10.1002/adfm.201100884 SN - 1616-301X VL - 21 IS - 23 SP - 4589 EP - 4594 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - McCarthy, Denis N. A1 - Stoyanov, Hristiyan A1 - Rychkov, Dmitry A1 - Ragusch, Huelya A1 - Melzer, Michael A1 - Kofod, Guggi T1 - Increased permittivity nanocomposite dielectrics by controlled interfacial interactions JF - Composites science and technology N2 - The use of nanoparticles in polymer composite dielectrics has promised great improvements, but useful results have been elusive. Here, the importance of the interfacial interactions between the nanoparticles and the polymer matrix are investigated in TiO2 nanocomposites for dielectric materials using surface functionalisation. The interface is observed to dominate the nanocomposite properties and leads to a threefold increase in permittivity at volume fractions as low as 10%. Surface functionalisation of the filler nanoparticles with silanes allows control of this interface, avoiding significant degradation of the other important material properties, particularly electrical breakdown strength, and resulting in a material that is demonstrated successfully as an active material in a dielectric elastomer actuator application with increased work output compared to the pure polymer. Although further permittivity increases are observed when the interface regions have formed a percolation network, the other material properties deteriorate. The observation of percolation behaviour allows the interface thickness to be estimated. KW - Ceramics KW - Nanocomposites KW - Actuator KW - Interface KW - Electrical properties Y1 - 2012 U6 - https://doi.org/10.1016/j.compscitech.2012.01.026 SN - 0266-3538 VL - 72 IS - 6 SP - 731 EP - 736 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zhu, Jian A1 - Stoyanov, Hristiyan A1 - Kofod, Guggi A1 - Suo, Zhigang T1 - Large deformation and electromechanical instability of a dielectric elastomer tube actuator N2 - This paper theoretically analyzes a dielectric elastomer tube actuator (DETA). Subject to a voltage difference between the inner and outer surfaces, the actuator reduces in thickness and expands in length, so that the same voltage will induce an even higher electric field. This positive feedback may cause the actuator to thin down drastically, resulting in electrical breakdown. We obtain an analytical solution of the actuator undergoing finite deformation when the elastomer obeys the neo-Hookean model. The critical strain of actuation is calculated in terms of various parameters of design. We also discuss the effect of the strain-stiffening on electromechanical behavior of DETAs by using the model of freely joined links. (C) 2010 American Institute of Physics. [doi:10.1063/1.3490186] Y1 - 2010 UR - http://jap.aip.org/ U6 - https://doi.org/10.1063/1.3490186 SN - 0021-8979 ER - TY - JOUR A1 - Kussmaul, Björn A1 - Risse, Sebastian A1 - Wegener, Michael A1 - Kofod, Guggi A1 - Krüger, Hartmut T1 - Matrix stiffness dependent electro-mechanical response of dipole grafted silicones JF - Smart materials and structures N2 - The properties of dielectric elastomer actuators can be optimized by modifying the dielectric or mechanical properties of the dielectric elastomer. This paper presents the simultaneous control of both dielectric and mechanical properties, in a silicone elastomer network comprising cross-linker, chains and grafted molecular dipoles. Chains with two different molecular weights were each combined with varying amounts of grafted dipole. Chemical and physical characterization showed that networks with stoichiometric control of cross-linking density and permittivity were obtained, and that longer chain lengths resulted in higher electrical field response due to the reduction in cross-linking density and correspondingly in mechanical stiffness. Both actuation sensitivities were enhanced by 6.3 and 4.6 times for the short and long chain matrix material, respectively. Y1 - 2012 U6 - https://doi.org/10.1088/0964-1726/21/6/064005 SN - 0964-1726 VL - 21 IS - 6 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Stoyanov, Hristiyan A1 - Kollosche, Matthias A1 - McCarthy, Denis N. A1 - Kofod, Guggi T1 - Molecular composites with enhanced energy density for electroactive polymers N2 - Actuators based on soft dielectric elastomers deform due to electric field induced Maxwell's stress, interacting with the mechanical properties of the material. The relatively high operating voltages of such actuators can be reduced by increasing the permittivity of the active material, while maintaining the mechanical properties and high electrical breakdown strength. Approaches relying on the use of highly polarizable molecules or conjugated polymers have so far provided the best results, however it has been difficult to maintain high breakdown strengths. In this work, a new approach for increasing the electrostatic energy density of a soft polymer based on molecular composites is presented, relying on chemically grafting soft gel-state pi-conjugated conducting macromolecules (polyaniline (PANI)) to a flexible elastomer backbone SEBS-g-MA (poly-styrene-co-ethylene-co-butylene-co-styrene-g-maleic anhydride). The approach was found to result in composites of increased permittivity (470% over the elastomer matrix) with hardly any reduction in breakdown strength (from 140 to 120 V mu m(-1)), resulting in a large increase in stored electrostatic energy. This led to an improvement in the measured electromechanical response as well as in the maximum actuation strain. A transition was observed when amounts of PANI exceeded 2 vol%, which was ascribed to the exhaustion of the MA- functionality of the SEBS-g-MA. The transition led to drastic increases in permittivity and conductivity, and a sharp drop in electrical breakdown strength. Although the transition caused further improvement of the electromechanical response, the reduction in electrical breakdown strength caused a limitation of the maximum achievable actuation strain. Y1 - 2010 UR - http://www.rsc.org/Publishing/Journals/jm/index.asp U6 - https://doi.org/10.1039/C0jm00519c SN - 0959-9428 ER - TY - JOUR A1 - Kofod, Guggi A1 - Stoyanov, Hristiyan A1 - Gerhard, Reimund T1 - Multilayer coaxial fiber dielectric elastomers for actuation and sensing JF - Applied physics : A, Materials science & processing N2 - A simple dip-coating technique was employed to manufacture coaxial actuators with multiple layers of alternating dielectric and conducting layers. A thin rubber string was coated with an electrode-insulator-electrode structure, giving rise to a thin, fiber-like actuator with coaxial geometry. The process was repeated to achieve a compact multilayer actuator with up to three coaxial dielectric layers. Mechanical and electromechanical characterization of the actuators is presented, showing actuation strains up to 8% and proper voltage-thickness scaling behavior. Also presented is a capacitance vs. extension plot, demonstrating that these structures can be used for compact and accurate capacitive strain sensing. Y1 - 2011 U6 - https://doi.org/10.1007/s00339-010-6066-5 SN - 0947-8396 SN - 1432-0630 VL - 102 IS - 3 SP - 577 EP - 581 PB - Springer CY - New York ER - TY - JOUR A1 - Vukicevic, Radovan A1 - Vukovic, Ivana A1 - Stoyanov, Hristiyan A1 - Korwitz, Andreas A1 - Pospiech, Doris A1 - Kofod, Guggi A1 - Loos, Katja A1 - ten Brinke, Gerrit A1 - Beuermann, Sabine T1 - Poly(vinylidene fluoride)-functionalized single-walled carbon nanotubes for the preparation of composites with improved conductivity JF - Polymer Chemistry N2 - The surface of single-walled carbon nanotubes (SWCNTs) was functionalized with azide-terminated poly(vinylidene fluoride) (PVDF). Functionalization was confirmed by dispersibility, Raman spectroscopy, and thermogravimetric analyses. Raman spectra show disordering of the SWCNTs, thus, strongly suggesting that PVDF was covalently attached to SWCNTs. Functionalized SWCNTs were mixed with commercially available PVDF in a twin-screw extruder and thin films were obtained by melt-pressing. Films containing 0.5 and 1 wt% PVDF-functionalized SWCNTs exhibited significantly improved electrical conductivity compared to PVDF films containing pristine SWCNTs. Y1 - 2012 U6 - https://doi.org/10.1039/c2py20166f SN - 1759-9954 VL - 3 IS - 8 SP - 2261 EP - 2265 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Laflamme, Simon A1 - Kollosche, Matthias A1 - Connor, Jerome J. A1 - Kofod, Guggi T1 - Robust flexible capacitive surface sensor for structural health monitoring applications JF - Journal of engineering mechanics N2 - Early detection of possible defects in civil infrastructure is vital to ensuring timely maintenance and extending structure life expectancy. The authors recently proposed a novel method for structural health monitoring based on soft capacitors. The sensor consisted of an off-the-shelf flexible capacitor that could be easily deployed over large surfaces, the main advantages being cost-effectiveness, easy installation, and allowing simple signal processing. In this paper, a capacitive sensor with tailored mechanical and electrical properties is presented, resulting in greatly improved robustness while retaining measurement sensitivity. The sensor is fabricated from a thermoplastic elastomer mixed with titanium dioxide and sandwiched between conductive composite electrodes. Experimental verifications conducted on wood and concrete specimens demonstrate the improved robustness, as well as the ability of the sensing method to diagnose and locate strain. KW - Strain gages KW - Structural health monitoring KW - Monitoring KW - Probe instruments KW - Strain gauge KW - Structural health monitoring KW - Strain monitoring KW - Capacitive sensor KW - Dielectric polymer KW - Stretchable sensor KW - Flexible membrane KW - Sensing skin Y1 - 2013 U6 - https://doi.org/10.1061/(ASCE)EM.1943-7889.0000530 SN - 0733-9399 SN - 1943-7889 VL - 139 IS - 7 SP - 879 EP - 885 PB - American Society of Civil Engineers CY - Reston ER - TY - JOUR A1 - Wache, Remi A1 - McCarthy, Denis N. A1 - Risse, Sebastian A1 - Kofod, Guggi T1 - Rotary Motion Achieved by New Torsional Dielectric Elastomer Actuators Design JF - IEEE ASME transactions on mechatronics N2 - This paper reports a new way to produce a rotation motion actuated by dielectric elastomer actuators. Two specific electrode designs have been developed and the rotation of the actuator centers has been demonstrated and measured. At low strains, the rotation shows a nearly quadratic dependence with the voltage. This behavior was used to compare the performances between the two proposed designs. Among the tested configurations, a maximal rotation of 10 degrees was achieved. KW - Dielectric elastomer actuator (DEA) KW - electroactive polymer KW - rotation Y1 - 2015 U6 - https://doi.org/10.1109/TMECH.2014.2301633 SN - 1083-4435 SN - 1941-014X VL - 20 IS - 2 SP - 975 EP - 977 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Kofod, Guggi A1 - Paajanen, Mika A1 - Bauer, Siegfried T1 - Self-organized minimum-energy structures for dielectric elastomer actuators Y1 - 2006 UR - http://www.springerlink.com/content/100501 U6 - https://doi.org/10.1007/s00339-006-3680-3 SN - 0947-8396 ER - TY - JOUR A1 - Laflamme, S. A1 - Kollosche, Matthias A1 - Connor, Jerome J. A1 - Kofod, Guggi T1 - Soft capacitive sensor for structural health monitoring of large-scale systems JF - Structural control & health monitorin N2 - Structural integrity of infrastructures can be preserved if damage is diagnosed, localized, and repaired in time. During the past decade, there has been a considerable effort to automate the process of structural health monitoring, which is complicated by the inherent large size of civil structures. Hence, a need has arisen to develop new approaches that enable more effective health monitoring. In this paper, a new sensing technique for damage localization on large civil structures is proposed. Specifically, changes in strain are detected using a capacitance sensor built with a soft, stretchable dielectric polymer with attached stretchable metal film electrodes. A change in strain causes a measurable change in the capacitance of the sensor, which can be directly monitored when the sensor is fixed to a structure. The proposed method is shown here to permit an accurate detection of cracks. The proposed system deploys a layer of dielectric polymer on the surface of a structural element, and regularly monitors any change in capacitance, giving in turn information about the structural state. The smart material is composed of inexpensive silicone elastomers, which make the monitoring system a promising application for large surfaces. Results from tests conducted on small- scale specimens showed that the technology is capable of detecting cracks, and tests conducted on large- size specimens demonstrated that several sensor patches organized on a sensor sheet are capable of localizing a crack. The sensor strain also exhibits a high correlation with the loss of stiffness. KW - large-scale system KW - structural health monitoring KW - strain monitoring KW - capacitive sensor KW - dielectric polymer KW - stretchable sensor Y1 - 2012 U6 - https://doi.org/10.1002/stc.426 SN - 1545-2263 VL - 19 IS - 1 SP - 70 EP - 81 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Ahnert, Karsten A1 - Abel, Markus A1 - Kollosche, Matthias A1 - Jorgensen, Per Jorgen A1 - Kofod, Guggi T1 - Soft capacitors for wave energy harvesting JF - Journal of materials chemistry N2 - Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggled with the problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regions with optimal behavior are found, and novel material descriptors are determined, which dramatically simplify analysis. The characteristics of currently available materials are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery. Y1 - 2011 U6 - https://doi.org/10.1039/c1jm12454d SN - 0959-9428 SN - 1364-5501 VL - 21 IS - 38 SP - 14492 EP - 14497 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Stoyanov, Hristiyan A1 - Kollosche, Matthias A1 - Risse, Sebastian A1 - Wache, Remi A1 - Kofod, Guggi T1 - Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles JF - Advanced materials N2 - Block copolymer elastomer conductors (BEC) are mixtures of block copolymers grafted with conducting polymers, which are found to support very large strains, while retaining a high level of conductivity. These novel materials may find use in stretchable electronics. The use of BEC is demonstrated in a capacitive strain sensor and in an artificial muscle of the dielectric elastomer actuator type, supporting more than 100% actuation strain and capacity strain sensitivity up to 300%. KW - soft electrical connections KW - stretchable electronics KW - elastic conductor KW - compliant electrodes Y1 - 2013 U6 - https://doi.org/10.1002/adma.201202728 SN - 0935-9648 VL - 25 IS - 4 SP - 578 EP - 583 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Carpi, Federico A1 - Anderson, Iain A1 - Bauer, Siegfried A1 - Frediani, Gabriele A1 - Gallone, Giuseppe A1 - Gei, Massimiliano A1 - Graaf, Christian A1 - Jean-Mistral, Claire A1 - Kaal, William A1 - Kofod, Guggi A1 - Kollosche, Matthias A1 - Kornbluh, Roy A1 - Lassen, Benny A1 - Matysek, Marc A1 - Michel, Silvain A1 - Nowak, Stephan A1 - Pei, Qibing A1 - Pelrine, Ron A1 - Rechenbach, Bjorn A1 - Rosset, Samuel A1 - Shea, Herbert T1 - Standards for dielectric elastomer transducers JF - Smart materials and structures N2 - Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation. KW - standard KW - dielectric elastomer KW - actuator KW - electromechanically active polymer KW - EAP KW - electroactive polymer KW - transducer Y1 - 2015 U6 - https://doi.org/10.1088/0964-1726/24/10/105025 SN - 0964-1726 SN - 1361-665X VL - 24 IS - 10 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kollosche, Matthias A1 - Stoyanov, Hristiyan A1 - Laflamme, Simon A1 - Kofod, Guggi T1 - Strongly enhanced sensitivity in elastic capacitive strain sensors JF - Journal of materials chemistry N2 - Strain sensors based on dielectric elastomer capacitors function by the direct coupling of mechanical deformations with the capacitance. The coupling can be improved by enhancing the relative permittivity of the dielectric elastomer. Here, this is carried out through the grafting of conducting polymer (poly-aniline) to the elastomer backbone, leading to molecular composites. An enhancement in capacitance response of 46 times is observed. This could help to extend the possible range of miniaturization towards even smaller device features. Y1 - 2011 U6 - https://doi.org/10.1039/c0jm03786a SN - 0959-9428 VL - 21 IS - 23 SP - 8292 EP - 8294 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Risse, Sebastian A1 - Kussmaul, Bjoern A1 - Krüger, Hartmut A1 - Kofod, Guggi T1 - Synergistic improvement of actuation properties with compatibilized high permittivity filler JF - Advanced functional materials N2 - Electroactive polymers can be used for actuators with many desirable features, including high electromechanical energy density, low weight, compactness, direct voltage control, and complete silence during actuation. These features may enable personalized robotics with much higher ability to delicately manipulate their surroundings than can be achieved with currently available actuators; however, much work is still necessary to enhance the electroactive materials. Electric field-driven actuator materials are improved by an increase in permittivity and by a reduction in stiffness. Here, a synergistic enhancement method based on a macromolecular plasticizing filler molecule with a combination of both high dipole moment and compatibilizer moieties, synthesized to simultaneously ensure improvement of electromechanical properties and compatibility with the host matrix is presented. Measurements show an 85% increase in permittivity combined with 290% reduction in mechanical stiffness. NMR measurements confirm the structure of the filler while DSC measurements confirm that it is compatible with the host matrix at all the mixture ratios investigated. Actuation strain measurements in the pure shear configuration display an increase in sensitivity to the electrical field of more than 450%, confirming that the filler molecule does not only improve dielectric and mechanical properties, it also leads to a synergistic enhancement of actuation properties by simple means. KW - allycyanide KW - silicone-based dielectric elastomer actuators KW - permittivity enhancement KW - compatibilized filler molecules Y1 - 2012 U6 - https://doi.org/10.1002/adfm.201200320 SN - 1616-301X VL - 22 IS - 18 SP - 3958 EP - 3962 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kollosche, Matthias A1 - Kofod, Guggi A1 - Suo, Zhigang A1 - Zhu, Jian T1 - Temporal evolution and instability in a viscoelastic dielectric elastomer JF - Journal of the mechanics and physics of solids N2 - Dielectric elastomer transducers are being developed for applications in stretchable electronics, tunable optics, biomedical devices, and soft machines. These transducers exhibit highly nonlinear electromechanical behavior: a dielectric membrane under voltage can form wrinkles, undergo snap-through instability, and suffer electrical breakdown. We investigate temporal evolution and instability by conducting a large set of experiments under various prestretches and loading rates, and by developing a model that allows viscoelastic instability. We use the model to classify types of instability, and map the experimental observations according to prestretches and loading rates. The model describes the entire set of experimental observations. A new type of instability is discovered, which we call wrinkle-to-wrinkle transition. A flat membrane at a critical voltage forms wrinkles and then, at a second critical voltage, snaps into another state of winkles of a shorter wavelength. This study demonstrates that viscoelasticity is essential to the understanding of temporal evolution and instability of dielectric elastomers. (C) 2014 Elsevier Ltd. All rights reserved. KW - Dielectric elastomer KW - Viscoelasticity KW - Snap-through instability KW - Phase transition KW - Wrinkling Y1 - 2015 U6 - https://doi.org/10.1016/j.jmps.2014.11.013 SN - 0022-5096 SN - 1873-4782 VL - 76 SP - 47 EP - 64 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Mc Carthy, Denis N. A1 - Risse, Stefan A1 - Katekomol, Phisan A1 - Kofod, Guggi T1 - The effect of dispersion on the increased relative permittivity of TiO2/SEBS composites N2 - Polymer composites are currently suggested for use as improved dielectric materials in many applications. Here, the effect of particle size and dispersion on the electrical properties of composites of rutile TiO2 and poly(styrene- ethylene-butadiene-styrene) (SEBS) are investigated. Both 15 and 300 nm particles are mixed with SEBS, with amounts of sorbitan monopalmitate surfactant from 0 to 3.3 vol%, and their dielectric and mechanical properties are measured. Composites with the 300 nm TiO2 particles result in increases of 170% in relative permittivity over the pure polymer, far above those predicted by standard theories, such as Bruggeman (140%) and Yamada (114%), and improving dispersion with surfactant has little effect. The composites with 15 nm particles showed surprisingly large relative permittivity increases (350%), but improving the dispersion by the addition of any surfactant causes the relative permittivity to decrease to 240% of the pure polymer value. We suggest that the increase is due to the formation of a highly conductive layer in the polymer around the TiO2 particles. Y1 - 2009 UR - http://iopscience.iop.org/0022-3727/ U6 - https://doi.org/10.1088/0022-3727/42/14/145406 SN - 0022-3727 ER - TY - JOUR A1 - Zhu, Jian A1 - Kollosche, Matthias A1 - Lu, Tongqing A1 - Kofod, Guggi A1 - Suo, Zhigang T1 - Two types of transitions to wrinkles in dielectric elastomers JF - Soft matter N2 - A membrane of a dielectric elastomer coated with compliant electrodes may form wrinkles as the applied voltage is ramped up. We present a combination of experiment and theory to investigate the transition to wrinkles using a clamped membrane subject to a constant force and a voltage ramp. Two types of transitions are identified. In type-I transition, the voltage-stretch curve is N-shaped, and flat and wrinkled regions coexist in separate areas of the membrane. The type-I transition progresses by nucleation of small wrinkled regions, followed by the growth of the wrinkled regions at the expense of the flat regions, until the entire membrane is wrinkled. By contrast, in type-II transition, the voltage-stretch curve is monotonic, and the entire flat membrane becomes wrinkled with no nucleation barrier. The two types of transitions are analogous to the first and the second order phase transitions. While the type-I transition is accompanied by a jump in the vertical displacement, type-II transition is accompanied by a continuous change in the vertical displacement. Such transitions may enable applications in muscle-like actuation and energy harvesting, where large deformation and large energy of conversion are desired. Y1 - 2012 U6 - https://doi.org/10.1039/c2sm26034d SN - 1744-683X VL - 8 IS - 34 SP - 8840 EP - 8846 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kollosche, Matthias A1 - Döring, Sebastian A1 - Stumpe, Joachim A1 - Kofod, Guggi T1 - Voltage-controlled compression for period tuning of optical surface relief gratings JF - OPTICS LETTERS N2 - This Letter reports on new methods and a consistent model for voltage tunable optical transmission gratings. Elastomeric gratings were molded from holographically written surface relief gratings in an azobenzene sol-gel material. These were placed on top of a transparent electroactive elastomeric substrate. Two different electro-active substrate elastomers were employed, with a large range of prestretches. A novel finite-deformation theory was found to match the device response excellently, without fitting parameters. The results clearly show that the grating underwent pure-shear deformation, and more surprisingly, that the mechanical properties of the electro-active substrate did not affect device actuation. (C) 2011 Optical Society of America Y1 - 2011 SN - 0146-9592 VL - 36 IS - 8 SP - 1389 EP - 1391 PB - OPTICAL SOC AMER CY - WASHINGTON ER -