TY - JOUR A1 - Calderan-Rodrigues, Maria Juliana A1 - Luzarowski, Marcin A1 - Monte-Bello, Carolina Cassano A1 - Minen, Romina Ines A1 - Zühlke, Boris M. A1 - Nikoloski, Zoran A1 - Skirycz, Aleksandra A1 - Caldana, Camila T1 - Proteogenic dipeptides are characterized by diel fluctuations and target of rapamycin complex-signaling dependency in the model plant Arabidopsis thaliana JF - Frontiers in plant science : FPLS N2 - As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specifically, we measured the abundance of 13 amino acids and 179 dipeptides over short- (SD) and long-day (LD) diel cycles, each with different light intensities. Of the measured dipeptides, 38 and eight were characterized by day-night oscillation in SD and LD, respectively, reaching maximum accumulation at the end of the day and then gradually falling in the night. Not only the number of dipeptides, but also the amplitude of the oscillation was higher in SD compared with LD conditions. Notably, rhythmic dipeptides were enriched in the glucogenic amino acids that can be converted into glucose. Considering the known role of Target of Rapamycin (TOR) signaling in regulating both autophagy and metabolism, we subsequently investigated whether diurnal fluctuations of dipeptides levels are dependent on the TOR Complex (TORC). The Raptor1b mutant (raptor1b), known for the substantial reduction of TOR kinase activity, was characterized by the augmented accumulation of dipeptides, which is especially pronounced under LD conditions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes. KW - dipeptide KW - diel cycle KW - metabolism KW - TOR signaling KW - protein-metabolite KW - interactions KW - carbon limitation KW - amino acid Y1 - 2021 U6 - https://doi.org/10.3389/fpls.2021.758933 SN - 1664-462X VL - 12 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Fichtner, Franziska A1 - Olas, Justyna Jadwiga A1 - Feil, Regina A1 - Watanabe, Mutsumi A1 - Krause, Ursula A1 - Hoefgen, Rainer A1 - Stitt, Mark A1 - Lunn, John Edward T1 - Functional features of Trehalose-6-Phosphate Synthase 1 BT - an essential enzyme in Arabidopsis T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Tre6P synthesis by TPS1 is essential for embryogenesis and postembryonic growth in Arabidopsis, and appropriate Suc signaling by Tre6P is dependent on the noncatalytic domains of TPS1. In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1432 KW - cyanobacterial sucrose-phosphatase KW - trehalose 6-phosphate KW - vegetative growth KW - crystal-structure KW - gene-expression KW - thaliana KW - metabolism KW - phosphorylation KW - reveals KW - proteins Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516532 SN - 1866-8372 IS - 6 ER - TY - JOUR A1 - Fichtner, Franziska A1 - Olas, Justyna Jadwiga A1 - Feil, Regina A1 - Watanabe, Mutsumi A1 - Krause, Ursula A1 - Hoefgen, Rainer A1 - Stitt, Mark A1 - Lunn, John Edward T1 - Functional features of Trehalose-6-Phosphate Synthase 1 BT - an essential enzyme in Arabidopsis JF - The Plant Cell N2 - Tre6P synthesis by TPS1 is essential for embryogenesis and postembryonic growth in Arabidopsis, and appropriate Suc signaling by Tre6P is dependent on the noncatalytic domains of TPS1. In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P. KW - cyanobacterial sucrose-phosphatase KW - trehalose 6-phosphate KW - vegetative growth KW - crystal-structure KW - gene-expression KW - thaliana KW - metabolism KW - phosphorylation KW - reveals KW - proteins Y1 - 2020 U6 - https://doi.org/10.1105/tpc.19.00837 SN - 0032-0781 SN - 1471-9053 VL - 32 IS - 6 SP - 1949 EP - 1972 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Schell, Mareike A1 - Wardelmann, Kristina A1 - Kleinridders, Andre T1 - Untangling the effect of insulin action on brain mitochondria and metabolism JF - Journal of neuroendocrinology N2 - The regulation of energy homeostasis is controlled by the brain and, besides requiring high amounts of energy, it relies on functional insulin/insulin-like growth factor (IGF)-1 signalling in the central nervous system. This energy is mainly provided by mitochondria in form of ATP. Thus, there is an intricate interplay between mitochondrial function and insulin/IGF-1 action to enable functional brain signalling and, accordingly, propagate a healthy metabolism. To adapt to different nutritional conditions, the brain is able to sense the current energy status via mitochondrial and insulin signalling-dependent pathways and exerts an appropriate metabolic response. However, regional, cell type and receptor-specific consequences of this interaction occur and are linked to diverse outcomes such as altered nutrient sensing, body weight regulation or even cognitive function. Impairments of this cross-talk can lead to obesity and glucose intolerance and are linked to neurodegenerative diseases, yet they also induce a self-sustainable, dysfunctional 'metabolic triangle' characterised by insulin resistance, mitochondrial dysfunction and inflammation in the brain. The identification of causal factors deteriorating insulin action, mitochondrial function and concomitantly a signature of metabolic stress in the brain is of utter importance to offer novel mechanistic insights into development of the continuously rising prevalence of non-communicable diseases such as type 2 diabetes and neurodegeneration. This review aims to determine the effect of insulin action on brain mitochondrial function and energy metabolism. It precisely outlines the interaction and differences between insulin action, insulin-like growth factor (IGF)-1 signalling and mitochondrial function; distinguishes between causality and association; and reveals its consequences for metabolism and cognition. We hypothesise that an improvement of at least one signalling pathway can overcome the vicious cycle of a self-perpetuating metabolic dysfunction in the brain present in metabolic and neurodegenerative diseases. KW - brain KW - energy homeostasis KW - inflammation KW - insulin signalling KW - metabolism KW - mitochondrial function Y1 - 2021 U6 - https://doi.org/10.1111/jne.12932 SN - 0953-8194 SN - 1365-2826 VL - 33 IS - 4 PB - Wiley CY - Hoboken ER - TY - THES A1 - Schlossarek, Dennis T1 - Identification of dynamic protein-metabolite complexes in saccharomyces cerevisiae using co-fractionation mass spectrometry T1 - Identifikation von dynamischen Protein-Metabolit Komplexes in Saccharomyces cerevisiae unter Nutzung der Co-Fraktionierungs Massenspektrometrie N2 - Cells are built from a variety of macromolecules and metabolites. Both, the proteome and the metabolome are highly dynamic and responsive to environmental cues and developmental processes. But it is not their bare numbers, but their interactions that enable life. The protein-protein (PPI) and protein-metabolite interactions (PMI) facilitate and regulate all aspects of cell biology, from metabolism to mitosis. Therefore, the study of PPIs and PMIs and their dynamics in a cell-wide context is of great scientific interest. In this dissertation, I aim to chart a map of the dynamic PPIs and PMIs across metabolic and cellular transitions. As a model system, I study the shift from the fermentative to the respiratory growth, known as the diauxic shift, in the budding yeast Saccharomyces cerevisiae. To do so, I am applying a co-fractionation mass spectrometry (CF-MS) based method, dubbed protein metabolite interactions using size separation (PROMIS). PROMIS, as well as comparable methods, will be discussed in detail in chapter 1. Since PROMIS was developed originally for Arabidopsis thaliana, in chapter 2, I will describe the adaptation of PROMIS to S. cerevisiae. Here, the obtained results demonstrated a wealth of protein-metabolite interactions, and experimentally validated 225 previously predicted PMIs. Applying orthogonal, targeted approaches to validate the interactions of a proteogenic dipeptide, Ser-Leu, five novel protein-interactors were found. One of those proteins, phosphoglycerate kinase, is inhibited by Ser-Leu, placing the dipeptide at the regulation of glycolysis. In chapter 3, I am presenting PROMISed, a novel web-tool designed for the analysis of PROMIS- and other CF-MS-datasets. Starting with raw fractionation profiles, PROMISed enables data pre-processing, profile deconvolution, scores differences in fractionation profiles between experimental conditions, and ultimately charts interaction networks. PROMISed comes with a user-friendly graphic interface, and thus enables the routine analysis of CF-MS data by non-computational biologists. Finally, in chapter 4, I applied PROMIS in combination with the isothermal shift assay to the diauxic shift in S. cerevisiae to study changes in the PPI and PMI landscape across this metabolic transition. I found a major rewiring of protein-protein-metabolite complexes, exemplified by the disassembly of the proteasome in the respiratory phase, the loss of interaction of an enzyme involved in amino acid biosynthesis and its cofactor, as well as phase and structure specific interactions between dipeptides and enzymes of central carbon metabolism. In chapter 5, I am summarizing the presented results, and discuss a strategy to unravel the potential patterns of dipeptide accumulation and binding specificities. Lastly, I recapitulate recently postulated guidelines for CF-MS experiments, and give an outlook of protein interaction studies in the near future. N2 - Die Zelle besteht aus einer Vielzahl von großen und kleinen Molekülen, und sowohl das Proteom als auch das Metabolom passen sich dynamisch den vorherrschenden Umweltbedingungen oder zellulären Anforderungen an. Allerdings ist es nicht die bloße Menge an biologischen Molekülen, sondern deren Interaktionen miteinander, die das Leben erst ermöglichen. Protein-Protein (PPI) und Protein-Metabolit Interaktionen (PMI) vollbringen und regulieren alle Aspekte der Zelle, vom Stoffwechsel bis zur Mitose. Die Studie dieser Interaktionen ist daher von fundamentalem wissenschaftlichem Interesse. In dieser Dissertation strebe ich an, eine Karte der Protein-Protein und Protein-Metabolit Interaktionen zu zeichnen, die den Übergang vom fermentativen zum respiratioschen Stoffwechsel in der Hefe Saccharomyces cerevisiae umfasst. Zu diesem Zweck nutze ich PROMIS (egl. protein metabolite interactions using size separation), eine auf der co-Fraktionierungs Massensprektrometrie (CF-MS) aufbauende Methode. PROMIS, und ähnliche Methoden zur Untersuchung von Protein-Interkationen, werden ausgiebig in Kapitel 1 vorgestellt. Da PROMIS ursprünglich für die Modellpflanze Arabadopsis thaliana entwickelt wurde, beschreibe ich in Kapitel 2 zunächst die erste Anwendung der Methode in S. cerevisiae. Die Ergebnisse stellen eine Fülle an Protein-Metabolit Interaktionen dar, und 225 zuvor prognostizierte Interaktionen wurden das erste Mal experimentell beschrieben. Mit Hilfe orthogonaler Methoden wurde außerdem eine inhibitorische Interaktion zwischen dem proteinogenen Dipeptid Ser-Leu und einem Enzym der Glykolyse gefunden. In Kapitel 3 präsentiere ich PROMISed, eine neue Web-Anwendung zur Auswertung von Daten von PROMIS oder anderen CF-MS Experimente. PROMISed kann genutzt werden um in rohen Fraktionierungs-Profile lokale Maxima zu finden, aus denen ein Interaktions-Netzwerk basierend auf Korrelationen erstellt wird. Außerdem kann die Anwendung Unterschiede in den Profilen zwischen verschiedenen experimentellen Bedingungen bewerten. PROMISed umfasst eine benutzerfreundliche grafische Oberfläche und bedarf daher keiner Programmierkenntnisse zur Nutzung. In Kapitel 4 benutze ich schließlich PROMIS und ItSA (engl. isothermal shift assay) um PPI und PMI während des Übergangs vom fermentativen zum respiratorischen Stoffwechsel in Hefe zu untersuchen. Hier beschreibe ich eine zellweite Umbildung der Protein-Metabolit-Komplexe, bespielhaft beschrieben anhand des Auseinanderfallens des Proteasoms im respiratorischen Stoffwechsel, des Verlustes der Interaktion zwischen einem Enzym des Aminosäure Stoffwechsels mit seinem Cofaktor und spezifischen Interaktionen zwischen Dipeptiden und Enzymen des zentralen Stoffwechsels. In Kapitel 5 fasse ich die gefundenen Ergebnisse zusammen und stelle eine Strategie zur Untersuchung der Spezifität sowohl der Bildung als auch der Protein-Interaktionen von Dipeptiden vor. Zu aller letzt rekapituliere ich Richtlinien für CF-MS Experimente und gebe einen Ausblick auf die nahe Zukunft der Studien der Protein-Interkationen. KW - Protein KW - Metabolit KW - Interaktion KW - Interaktions Netzwerk KW - Stoffwechsel KW - Saccharomyces cerevisiae KW - protein KW - metabolite KW - interaction KW - interaction network KW - metabolism KW - saccharomyces cerevisiae KW - interactomics KW - proteomics KW - metabolomics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-582826 ER - TY - THES A1 - Igual Gil, Carla T1 - Role of the GDF15-GFRAL pathway under skeletal muscle mitochondrial stress T1 - Funktion des GDF15-GFRAL Signaltransduktionsweges bei mitochondrialem Stress im Skelettmuskel N2 - Growth differentiation factor 15 (GDF15) is a stress-induced cytokine secreted into the circulation by a number of tissues under different pathological conditions such as cardiovascular disease, cancer or mitochondrial dysfunction, among others. While GDF15 signaling through its recently identified hindbrain-specific receptor GDNF family receptor alpha-like (GFRAL) has been proposed to be involved in the metabolic stress response, its endocrine role under chronic stress conditions is still poorly understood. Mitochondrial dysfunction is characterized by the impairment of oxidative phosphorylation (OXPHOS), leading to inefficient functioning of mitochondria and consequently, to mitochondrial stress. Importantly, mitochondrial dysfunction is among the pathologies to most robustly induce GDF15 as a cytokine in the circulation. The overall aim of this thesis was to elucidate the role of the GDF15-GFRAL pathway under mitochondrial stress conditions. For this purpose, a mouse model of skeletal muscle-specific mitochondrial stress achieved by ectopic expression of uncoupling protein 1 (UCP1), the HSA-Ucp1-transgenic (TG) mouse, was employed. As a consequence of mitochondrial stress, TG mice display a metabolic remodeling consisting of a lean phenotype, an improved glucose metabolism, an increased metabolic flexibility and a metabolic activation of white adipose tissue. Making use of TG mice crossed with whole body Gdf15-knockout (GdKO) and Gfral-knockout (GfKO) mouse models, this thesis demonstrates that skeletal muscle mitochondrial stress induces the integrated stress response (ISR) and GDF15 in skeletal muscle, which is released into the circulation as a myokine (muscle-induced cytokine) in a circadian manner. Further, this work identifies GDF15-GFRAL signaling to be responsible for the systemic metabolic remodeling elicited by mitochondrial stress in TG mice. Moreover, this study reveals a daytime-restricted anorexia induced by the GDF15-GFRAL axis under muscle mitochondrial stress, which is, mechanistically, mediated through the induction of hypothalamic corticotropin releasing hormone (CRH). Finally, this work elucidates a so far unknown physiological outcome of the GDF15-GFRAL pathway: the induction of anxiety-like behavior. In conclusion, this study uncovers a muscle-brain crosstalk under skeletal muscle mitochondrial stress conditions through the induction of GDF15 as a myokine that signals through the hindbrain-specific GFRAL receptor to elicit a stress response leading to metabolic remodeling and modulation of ingestive- and anxiety-like behavior. N2 - Der Wachstum- und Differenzierungsfaktor 15 (GDF15) ist ein stressinduziertes Zytokin, dass bei u.a. Krebs, kardiovaskulären oder mitochondrialer Erkrankungen in den betroffenen Geweben stark induziert und ins Blut sekretiert werden kann. Die endokrine Funktion von GDF15 sowie die Bedeutung des kürzlich identifizierten und spezifisch im Hirnstamm exprimierten GDF15-Rezeptors GFRAL (GDNF family receptor alpha-like) unter chronischen Stressbedingungen ist jedoch noch unzureichend verstanden. Mitochondrialer Stress ist durch eine Fehlfunktion der oxidativen Phosphorylierung (OXPHOS) charakterisiert, was eine ineffiziente ATP-Synthese und eine gestörte zelluläre Energiehomöostase zur Folge hat. Ziel der Doktorarbeit war es, die biologische Funktion des GDF15-GFRAL-Signalwegs unter mitochondrialen Stressbedingungen aufzuklären. Zu diesem Zweck wurde das etablierte transgene HSA-Ucp1-Mausmodel (TG) untersucht, welches durch eine chronisch verringerte OXPHOS-Effizienz spezifisch im Skelettmuskel sowie eine systemische Anpassung des Energiestoffwechsels charakterisiert ist. Dabei konnte in dieser Arbeit zunächst zeigt werden, dass mitochondrialer Stress im Skelettmuskel zell-autonom eine integrierte Stressantwort (ISR) induziert, wodurch die Expression und Sekretion von GDF15 in den Blutkreislauf als Myokin (muskelinduziertes Zytokin) stark erhöht wird. Zudem konnte erstmalig eine tageszeitliche Schwankung der muskulären Gdf15 Genexpression und der im Blut zirkulierenden GDF15-Level bei TG Mäusen identifiziert werden. Durch weiterführende Zuchtkreuzungen der TG-Mäuse mit konstitutiven Knockout-Mäusen (KO) zur Inaktivierung der Gene Gdf15 (GdKO) oder Gfral (GfKO), konnte zudem gezeigt werden, dass sowohl durch das zirkulierende GDF15 als auch die Aktivierung der GFRAL-Signalachse eine Tageszeit-abhängige Anorexie sowie die systemische Anpassung des Energiestoffwechsels im TG Mausmodell vermittelt werden. Mechanistisch konnte dabei erstmalig eine GFRAL-abhängige Induktion von Corticotropin-releasing Hormone (CRH) im Hypothalamus sowie ein erhöhtes, GFRAL-abhängiges Angstverhalten in TG Mäuse beschrieben werden. Zusammenfassend unterstreichen die Ergebnisse die systemische Rolle von GDF15 als Myokin und die Bedeutung der endokrinen Kommunikation zwischen Skelettmuskel und Gehirn, vermittelt durch GDF15-GFRAL Signalachse, für die Energiehomöostase bei mitochondrialer Fehlfunktion. Die gewonnen Erkenntnisse dieser Doktorarbeit können somit zur Entwicklung neuer Therapieansätze für Patienten mit einer mitochondrialen bzw. Stoffwechselerkrankung beitragen. KW - GDF15 KW - mitochondria KW - physiology KW - metabolism KW - GDF15 KW - Stoffwechsel KW - Mitochondrien KW - Physiologie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-554693 ER - TY - THES A1 - Wijesingha Ahchige, Micha T1 - Canalization of plant metabolism and yield T1 - Kanalisierung des Pflanzenmetabolismus und -ertrags N2 - Plant metabolism is the main process of converting assimilated carbon to different crucial compounds for plant growth and therefore crop yield, which makes it an important research topic. Although major advances in understanding genetic principles contributing to metabolism and yield have been made, little is known about the genetics responsible for trait variation or canalization although the concepts have been known for a long time. In light of a growing global population and progressing climate change, understanding canalization of metabolism and yield seems ever-more important to ensure food security. Our group has recently found canalization metabolite quantitative trait loci (cmQTL) for tomato fruit metabolism, showing that the concept of canalization applies on metabolism. In this work two approaches to investigate plant metabolic canalization and one approach to investigate yield canalization are presented. In the first project, primary and secondary metabolic data from Arabidopsis thaliana and Phaseolus vulgaris leaf material, obtained from plants grown under different conditions was used to calculate cross-environment coefficient of variations or fold-changes of metabolite levels per genotype and used as input for genome wide association studies. While primary metabolites have lower CV across conditions and show few and mostly weak associations to genomic regions, secondary metabolites have higher CV and show more, strong metabolite to genome associations. As candidate genes, both potential regulatory genes as well as metabolic genes, can be found, albeit most metabolic genes are rarely directly related to the target metabolites, suggesting a role for both potential regulatory mechanisms as well as metabolic network structure for canalization of metabolism. In the second project, candidate genes of the Solanum lycopersicum cmQTL mapping are selected and CRISPR/Cas9-mediated gene-edited tomato lines are created, to validate the genes role in canalization of metabolism. Obtained mutants appeared to either have strong aberrant developmental phenotypes or appear wild type-like. One phenotypically inconspicuous mutant of a pantothenate kinase, selected as candidate for malic acid canalization shows a significant increase of CV across different watering conditions. Another such mutant of a protein putatively involved in amino acid transport, selected as candidate for phenylalanine canalization shows a similar tendency to increased CV without statistical significance. This potential role of two genes involved in metabolism supports the hypothesis of structural relevance of metabolism for its own stability. In the third project, a mutant for a putative disulfide isomerase, important for thylakoid biogenesis, is characterized by a multi-omics approach. The mutant was characterized previously in a yield stability screening and showed a variegated leaf phenotype, ranging from green leaves with wild type levels of chlorophyll over differently patterned variegated to completely white leaves almost completely devoid of photosynthetic pigments. White mutant leaves show wild type transcript levels of photosystem assembly factors, with the exception of ELIP and DEG orthologs indicating a stagnation at an etioplast to chloroplast transition state. Green mutant leaves show an upregulation of these assembly factors, possibly acting as overcompensation for partially defective disulfide isomerase, which seems sufficient for proper chloroplast development as confirmed by a wild type-like proteome. Likely as a result of this phenotype, a general stress response, a shift to a sink-like tissue and abnormal thylakoid membranes, strongly alter the metabolic profile of white mutant leaves. As the severity and pattern of variegation varies from plant to plant and may be effected by external factors, the effect on yield instability, may be a cause of a decanalized ability to fully exploit the whole leaf surface area for photosynthetic activity. N2 - Der pflanzliche Stoffwechsel ist der Hauptprozess, der assimilierten Kohlenstoff in unterschiedliche Stoffe umwandelt, die wichtig für das Pflanzenwachstum und somit den Ertrag sind, weswegen es ein wichtiges Forschungsthema ist. Obwohl große Fortschritte beim Verständnis der genetischen Prinzipien, die zum Stoffwechsel und Ertrag beitragen, gemacht wurden, ist noch relativ wenig über die genetischen Prinzipien bekannt, die für die Variation oder Kanalisierung von Eigenschaften verantwortlich sind, obwohl diese Konzepte schon lange bekannt sind. In Anbetracht einer wachsenden Weltbevölkerung und des fortschreitenden Klimawandels, scheint es immer wichtiger zu sein, Kanalisierung von Metabolismus und Ertrag zu verstehen, um Ernährungssicherheit zu garantieren. Unsere Gruppe hat kürzlich metabolisch kanalisierte quantitative Merkmalsregionen für den Stoffwechsel von Tomatenfrüchten gefunden und damit gezeigt, dass sich das Konzept der Kanalisierung sich auf den Stoffwechsel anwenden lässt. In dieser Arbeit werden zwei Ansätze zu Untersuchung von Kanalisierung des pflanzlichen Stoffwechsels und ein Ansatz zur Untersuchung von Ertragskanalisierung präsentiert. Im ersten Projekt, wurden Daten von Primär- und Sekundärmetaboliten von Arabidopsis thaliana und Phaseolus vulgaris, gewonnen von Pflanzen, die unter unterschiedlichen Bedingungen wuchsen, verwendet, um den Variationskoeffizient (VarK) oder die relative Änderung von Stoffgehalten umweltübergreifend für jeden Genotyp zu berechnen und als Eingabe für genomweite Assoziationsstudien verwendet. Während Primärmetabolite über unterschiedliche Umweltbedingungen einen geringeren VarK haben und nur wenige eher schwache Assoziationen zu genomischen Regionen zeigen, haben Sekundärstoffe einen höheren VarK und zeigen mehr und stärkere Assoziationen zwischen Metabolit und Genom. Als Kandidatengene können sowohl potenziell regulatorische, als auch metabolische Gene gefunden werden, jedoch sind metabolische Gene selten direkt zu den Zielmetaboliten verbunden, was für eine Rolle von sowohl regulatorischen Mechanismen als auch metabolischer Netzwerkstruktur für die Kanalisierung des Stoffwechsels spricht. Im zweiten Projekt wurden Kandidatengene aus der Solanum lycopersicum cmQTL-Kartierung, ausgewählt und CRISPR/Cas9-vermittelte, genomeditierte Tomatenlinien erschaffen, um die Rolle dieser Gene in der Kanalisierung des Metabolismus zu validieren. Erhaltene Mutanten zeigten entweder starke Fehlentwicklungsphänotypen oder erschienen wildtypähnlich. Eine phänotypisch unauffällige Mutante einer Pantothensäurekinase, die als Kandidat für die Kanalisierung von Apfelsäure gewählt wurde, zeigte einen signifikanten Anstieg des VarK über unterschiedliche Bewässerungsbedingungen. Eine andere solche Mutante eines Proteins, welches mutmaßlich im Aminosäuretransport involviert ist, welches als Kandidat für die Kanalisierung von Phenylalanin gewählt wurde, zeigt eine ähnliche Tendenz zu einem erhöhten VarK ohne statistische Signifikanz. Diese potenzielle Rolle von zwei Genen, die im Stoffwechsel involviert sind, unterstützt die Hypothese einer strukturellen Relevanz des Metabolismus für seine eigene Stabilität. Im dritten Projekt wurde eine Mutante einer mutmaßlichen Disulfid-Isomerase, welche wichtig für die Thylakoidbiogenese ist, durch einen Multiomik Ansatz charakterisiert. Die Mutante wurde vorher in einer Ertragsstabilitäts-Selektierung charakterisiert und zeigte einen panaschierten Blattphänotyp, welcher von grünen Blättern mit Wildtyp Chlorophyllgehalt über unterschiedlich gemustert panaschierte Blätter bis zu komplett weißen Blätter reichte, die fast gar keine photosynthetischen Pigmente enthielten. Weiße Blätter der Mutante zeigen Wildtyp Transkriptlevel von Photosystem-Aufbaufaktoren, mit der Ausnahme von ELIP und DEG Orthologen, was indikativ für eine Stagnation in einer Etioplast-zu-Chloroplast-Übergangsphase ist. Grüne Blätter der Mutante zeigen eine Hochregulierung dieser Aufbaufaktoren, was möglicherweise als Überkompensation für eine partiell defekte Disulfid-Isomerase wirkt und letztlich ausreichend für Chloroplastenentwicklung zu sein scheint, was wiederum durch ein wildtyp-ähnliches Proteom bestätigt wird. Wahrscheinlich als Effekt dieses Phänotyps ändern, eine generelle Stressantwort, eine Umschaltung zu einem Senke-ähnlichen Gewebe und abnormale Thylakoidmembranen, stark das metabolische Profil von weißen Blättern der Mutante. Da der Schweregrad und das Muster der Panaschierung von Pflanze zu Pflanze unterschiedlich ist und durch äußere Faktoren beeinflusst sein könnte, könnte der Effekt auf die Ertragsstabilität eine Folge einer dekanalisierten Fähigkeit sein die ganze Blattoberfläche für photosynthetische Aktivität zu nutzen. KW - canalization KW - phenotypic variation KW - metabolism KW - CRISPR/Cas9 KW - GWAS KW - CRISPR/Cas9 KW - GWAS KW - Kanalisierung KW - Metabolismus KW - phänotypische Variation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548844 ER - TY - JOUR A1 - Scharnweber, Inga Kristin A1 - Andersson, Matilda L. A1 - Chaguaceda, Fernando A1 - Eklöv, Peter T1 - Intraspecific differences in metabolic rates shape carbon stable isotope trophic discrimination factors of muscle tissue in the common teleost Eurasian perch (Perca fluviatilis) JF - Ecology and evolution N2 - Stable isotopes represent a unique approach to provide insights into the ecology of organisms. δ13C and δ15N have specifically been used to obtain information on the trophic ecology and food-web interactions. Trophic discrimination factors (TDF, Δ13C and Δ15N) describe the isotopic fractionation occurring from diet to consumer tissue, and these factors are critical for obtaining precise estimates within any application of δ13C and δ15N values. It is widely acknowledged that metabolism influences TDF, being responsible for different TDF between tissues of variable metabolic activity (e.g., liver vs. muscle tissue) or species body size (small vs. large). However, the connection between the variation of metabolism occurring within a single species during its ontogeny and TDF has rarely been considered. Here, we conducted a 9-month feeding experiment to report Δ13C and Δ15N of muscle and liver tissues for several weight classes of Eurasian perch (Perca fluviatilis), a widespread teleost often studied using stable isotopes, but without established TDF for feeding on a natural diet. In addition, we assessed the relationship between the standard metabolic rate (SMR) and TDF by measuring the oxygen consumption of the individuals. Our results showed a significant negative relationship of SMR with Δ13C, and a significant positive relationship of SMR with Δ15N of muscle tissue, but not with TDF of liver tissue. SMR varies inversely with size, which translated into a significantly different TDF of muscle tissue between size classes. In summary, our results emphasize the role of metabolism in shaping-specific TDF (i.e., Δ13C and Δ15N of muscle tissue) and especially highlight the substantial differences between individuals of different ontogenetic stages within a species. Our findings thus have direct implications for the use of stable isotope data and the applications of stable isotopes in food-web studies. KW - fractionation factors KW - metabolism KW - ontogeny KW - standard metabolic rate KW - tissue types KW - δ13C KW - δ15N Y1 - 2021 SN - 2045-7758 VL - 11 IS - 14 SP - 9804 EP - 9814 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - Scharnweber, Inga Kristin A1 - Andersson, Matilda L. A1 - Chaguaceda, Fernando A1 - Eklöv, Peter T1 - Intra-specific differences in metabolic rates shape carbon stable isotope trophic discrimination factors of muscle tissue in the common teleost Eurasian perch (Perca fluviatilis) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Stable isotopes represent a unique approach to provide insights into the ecology of organisms. δ13C and δ15N have specifically been used to obtain information on the trophic ecology and food-web interactions. Trophic discrimination factors (TDF, Δ13C and Δ15N) describe the isotopic fractionation occurring from diet to consumer tissue, and these factors are critical for obtaining precise estimates within any application of δ13C and δ15N values. It is widely acknowledged that metabolism influences TDF, being responsible for different TDF between tissues of variable metabolic activity (e.g., liver vs. muscle tissue) or species body size (small vs. large). However, the connection between the variation of metabolism occurring within a single species during its ontogeny and TDF has rarely been considered. Here, we conducted a 9-month feeding experiment to report Δ13C and Δ15N of muscle and liver tissues for several weight classes of Eurasian perch (Perca fluviatilis), a widespread teleost often studied using stable isotopes, but without established TDF for feeding on a natural diet. In addition, we assessed the relationship between the standard metabolic rate (SMR) and TDF by measuring the oxygen consumption of the individuals. Our results showed a significant negative relationship of SMR with Δ13C, and a significant positive relationship of SMR with Δ15N of muscle tissue, but not with TDF of liver tissue. SMR varies inversely with size, which translated into a significantly different TDF of muscle tissue between size classes. In summary, our results emphasize the role of metabolism in shaping-specific TDF (i.e., Δ13C and Δ15N of muscle tissue) and especially highlight the substantial differences between individuals of different ontogenetic stages within a species. Our findings thus have direct implications for the use of stable isotope data and the applications of stable isotopes in food-web studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1179 KW - fractionation factors KW - metabolism KW - ontogeny KW - standard metabolic rate KW - tissue types KW - δ13C KW - δ15N Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524015 SN - 1866-8372 IS - 14 ER - TY - THES A1 - Mancini, Carola T1 - Analysis of the effects of age-related changes of metabolic flux on brown adipocyte formation and function N2 - Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, thereby allowing mammals to maintain a constant body temperature in a cold environment. Thermogenic capacity of this tissue is due to a high mitochondrial density and expression of uncoupling protein 1 (UCP1), a unique brown adipocyte marker which dissipates the mitochondrial proton gradient to produce heat instead of ATP. BAT is actively involved in whole-body metabolic homeostasis and during aging there is a loss of classical brown adipose tissue with concomitantly reduced browning capacity of white adipose tissue. Therefore, an age-dependent decrease of BAT-related energy expenditure capacity may exacerbate the development of metabolic diseases, including obesity and type 2 diabetes mellitus. Given that direct effects of age-related changes of BAT-metabolic flux have yet to be unraveled, the aim of the current thesis is to investigate potential metabolic mechanisms involved in BAT-dysfunction during aging and to identify suitable metabolic candidates as functional biomarkers of BAT-aging. To this aim, integration of transcriptomic, metabolomic and proteomic data analyses of BAT from young and aged mice was performed, and a group of candidates with age-related changes was revealed. Metabolomic analysis showed age-dependent alterations of metabolic intermediates involved in energy, nucleotide and vitamin metabolism, with major alterations regarding the purine nucleotide pool. These data suggest a potential role of nucleotide intermediates in age-related BAT defects. In addition, the screening of transcriptomic and proteomic data sets from BAT of young and aged mice allowed identification of a 60-kDa lysophospholipase, also known as L-asparaginase (Aspg), whose expression declines during BAT-aging. Involvement of Aspg in brown adipocyte thermogenic function was subsequently analyzed at the molecular level using in vitro approaches and animal models. The findings revealed sensitivity of Aspg expression to β3-adrenergic activation via different metabolic cues, including cold exposure and treatment with β3-adrenergic agonist CL. To further examine ASPG function in BAT, an over-expression model of Aspg in a brown adipocyte cell line was established and showed that these cells were metabolically more active compared to controls, revealing increased expression of the main brown-adipocyte specific marker UCP1, as well as higher lipolysis rates. An in vitro loss-of-function model of Aspg was also functionally analyzed, revealing reduced brown adipogenic characteristics and an impaired lipolysis, thus confirming physiological relevance of Aspg in brown adipocyte function. Characterization of a transgenic mouse model with whole-body inactivation of the Aspg gene (Aspg-KO) allowed investigation of the role of ASPG under in vivo conditions, indicating a mild obesogenic phenotype, hypertrophic white adipocytes, impairment of the early thermogenic response upon cold-stimulation and dysfunctional insulin sensitivity. Taken together, these data show that ASPG may represent a new functional biomarker of BAT-aging that regulates thermogenesis and therefore a potential target for the treatment of age-related metabolic disease. KW - adipose tissue KW - aging KW - nutrients KW - metabolism KW - Fettgewebe KW - Alterung KW - Stoffwechsel KW - Nährstoffe Y1 - 2021 U6 - https://doi.org/10.25932/publishup-51266 ER - TY - THES A1 - Laeger, Thomas T1 - Protein-dependent regulation of feeding, metabolism, and development of type 2 diabetes T1 - Proteinabhängige Regulation der Nahrungsaufnahme und des Metabolismus sowie Entstehung des Typ-2-Diabetes BT - FGF21’s biological role BT - die Rolle von FGF21 N2 - Food intake is driven by the need for energy but also by the demand for essential nutrients such as protein. Whereas it was well known how diets high in protein mediate satiety, it remained unclear how diets low in protein induce appetite. Therefore, this thesis aims to contribute to the research area of the detection of restricted dietary protein and adaptive responses. This thesis provides clear evidence that the liver-derived hormone fibroblast growth factor 21 (FGF21) is an endocrine signal of a dietary protein restriction, with the cellular amino acid sensor general control nonderepressible 2 (GCN2) kinase acting as an upstream regulator of FGF21 during protein restriction. In the brain, FGF21 is mediating the protein-restricted metabolic responses, e.g. increased energy expenditure, food intake, insulin sensitivity, and improved glucose homeostasis. Furthermore, endogenous FGF21 induced by dietary protein or methionine restriction is preventing the onset of type 2 diabetes in the New Zealand Obese mouse. Overall, FGF21 plays an important role in the detection of protein restriction and macronutrient imbalance in rodents and humans, and mediates both the behavioral and metabolic responses to dietary protein restriction. This makes FGF21 a critical physiological signal of dietary protein restriction, highlighting the important but often overlooked impact of dietary protein on metabolism and eating behavior, independent of dietary energy content. N2 - Die Nahrungsaufnahme wird nicht nur durch den Bedarf an Energie, sondern auch durch den Bedarf an essenziellen Nährstoffen wie z. B. Protein bestimmt. Es war zwar bekannt, wie proteinreiche Nahrung eine Sättigung vermittelt, jedoch war unklar, wie eine proteinarme Ernährung den Appetit anregt. Ziel dieser Arbeit ist es daher, zu untersuchen, wie Nahrung mit einem niedrigen Proteingehalt detektiert wird und die Anpassung des Organismus im Hinblick auf den Metabolismus und das Ernährungsverhalten erfolgt. Diese Arbeit liefert klare Beweise dafür, dass das aus der Leber stammende Hormon Fibroblast growth factor 21 (FGF21) ein endokrines Signal einer Nahrungsproteinrestriktion ist, wobei der zelluläre Aminosäuresensor general control nonderepressible 2 kinase (GCN2) als Regulator von FGF21 während der Proteinrestriktion fungiert. Im Gehirn vermittelt FGF21 die durch Proteinrestriktion induzierten Stoffwechselreaktionen, z.B. den Anstieg des Energieverbrauches, die Erhöhung der Nahrungsaufnahme und eine Verbesserung der Insulinsensitivität sowie der Glukosehomöostase. Darüber hinaus schützt das durch eine protein- oder methioninarme Diät induzierte FGF21 New Zealand Obese (NZO)-Mäuse, einem Tiermodell für den humanen Typ-2-Diabetes, vor einer Diabetesentstehung. FGF21 spielt bei Nagetieren und Menschen eine wichtige Rolle hinsichtlich der Detektion einer diätetischen Proteinrestriktion sowie eines Ungleichgewichtes der Makronährstoffe zueinander und vermittelt die adaptiven Verhaltens- und Stoffwechselreaktionen. Dies macht FGF21 zu einem kritischen physiologischen Signal der Nahrungsproteinrestriktion und unterstreicht den wichtigen, aber oft übersehenen Einfluss der Nahrungsproteine auf den Stoffwechsel und das Nahrungsaufnahmeverhalten, unabhängig vom Energiegehalt der Nahrung. KW - protein restriction KW - autophagy KW - thermogenesis KW - appetite KW - hyperglycemia KW - methionine restriction KW - bone KW - FGF21 KW - energy expenditure KW - GCN2 KW - metabolism KW - food choice KW - type 2 diabetes Y1 - 2021 ER - TY - THES A1 - Küken, Anika T1 - Predictions from constraint-based approaches including enzyme kinetics N2 - The metabolic state of an organism reflects the entire phenotype that is jointly affected by genetic and environmental changes. Due to the complexity of metabolism, system-level modelling approaches have become indispensable tools to obtain new insights into biological functions. In particular, simulation and analysis of metabolic networks using constraint-based modelling approaches have helped the analysis of metabolic fluxes. However, despite ongoing improvements in prediction of reaction flux through a system, approaches to directly predict metabolite concentrations from large-scale metabolic networks remain elusive. In this thesis, we present a computational approach for inferring concentration ranges from genome-scale metabolic models endowed with mass action kinetics. The findings specify a molecular mechanism underling facile control of concentration ranges for components in large-scale metabolic networks. Most importantly, an extended version of the approach can be used to predict concentration ranges without knowledge of kinetic parameters, provided measurements of concentrations in a reference state. We show that the approach is applicable with large-scale kinetic and stoichiometric metabolic models of organisms from different kingdoms of life. By challenging the predictions of concentration ranges in the genome-scale metabolic network of Escherichia coli with real-world data sets, we further demonstrate the prediction power and limitations of the approach. To predict concentration ranges in other species, e.g. model plant species Arabidopsis thaliana, we would rely on estimates of kinetic parameters (i.e. enzyme catalytic rates) since plant-specific enzyme catalytic rates are poorly documented. Using the constraint-based approach of Davidi et al. for estimation of enzyme catalytic rates, we obtain values for 168 plant enzymes. The approach depends on quantitative proteomics data and flux estimates obtained from constraint-based model of plant leaf metabolism integrating maximal rates of selected enzymes, plant-specific constraints on fluxes through canonical pathways, and growth measurements from Arabidopsis thaliana rosette under ten conditions. We demonstrate a low degree of plant enzyme saturation, supported by the agreement between concentrations of nicotinamide adenine dinucleotide, adenosine triphosphate, and glyceraldehyde 3-phosphate, based on our maximal in vivo catalytic rates, and available quantitative metabolomics data. Hence, our results show genome-wide estimation for plant-specific enzyme catalytic rates is feasible. These can now be readily employed to study resource allocation, to predict enzyme and metabolite concentrations using recent constrained-based modelling approaches. Constraint-based methods do not directly account for kinetic mechanisms and corresponding parameters. Therefore, a number of workflows have already been proposed to approximate reaction kinetics and to parameterize genome-scale kinetic models. We present a systems biology strategy to build a fully parameterized large-scale model of Chlamydomonas reinhardtii accounting for microcompartmentalization in the chloroplast stroma. Eukaryotic algae comprise a microcompartment, the pyrenoid, essential for the carbon concentrating mechanism (CCM) that improves their photosynthetic performance. Since the experimental study of the effects of microcompartmentation on metabolic pathways is challenging, we employ our model to investigate compartmentation of fluxes through the Calvin-Benson cycle between pyrenoid and stroma. Our model predicts that ribulose-1,5-bisphosphate, the substrate of Rubisco, and 3-phosphoglycerate, its product, diffuse in and out of the pyrenoid. We also find that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Therefore, our computational approach represents a stepping stone towards understanding of microcompartmentalized CCM in other organisms. This thesis provides novel strategies to use genome-scale metabolic networks to predict and integrate metabolite concentrations. Therefore, the presented approaches represent an important step in broadening the applicability of large-scale metabolic models to a range of biotechnological and medical applications. N2 - Der Stoffwechsel eines Organismus spiegelt den gesamten Phänotyp wieder, welcher durch genetische und umweltbedingte Veränderungen beeinflusst wird. Aufgrund der Komplexität des Stoffwechsels sind Modellierungsansätze, welche das ganzheitliches System betrachten, zu unverzichtbaren Instrumenten geworden, um neue Einblicke in biologische Funktionen zu erhalten. Insbesondere die Simulation und Analyse von Stoffwechselnetzwerken mithilfe von Constraint-basierten Modellierungsansätzen hat die Analyse von Stoffwechselflüssen erleichtert. Trotz kontinuierlicher Verbesserungen bei der Vorhersage des Reaktionsflusses durch ein System, sind Ansätze zur direkten Vorhersage von Metabolitkonzentrationen aus metabolischen Netzwerken kaum vorhanden. In dieser Arbeit stellen wir einen Ansatz vor, mit welchem Konzentrationsbereiche aus genomweiten metabolischen Netzwerken, die mit einer Massenwirkungskinetik ausgestattet sind, abgeleitet werden können. Die Ergebnisse zeigen einen molekularen Mechanismus auf, welcher der Steuerung von Konzentrationsbereichen für Komponenten in metabolischen Netzwerken zugrunde liegt. Eine erweiterte Version des Ansatzes kann verwendet werden, um Konzentrationsbereiche ohne Kenntnis der kinetischen Parameter vorherzusagen, vorausgesetzt, dass Messungen von Konzentrationen in einem Referenzzustand vorhanden sind. Wir zeigen, dass der Ansatz mit kinetischen und stöchiometrischen Stoffwechselmodellen von Organismen aus verschiedenen taxonomischen Reichen anwendbar ist. Indem wir die Vorhersagen von Konzentrationsbereichen im genomweiten Stoffwechselnetzwerk von Escherichia coli mit realen Datensätzen validieren, demonstrieren wir die Vorhersagekraft und die Grenzen des Ansatzes. Um Konzentrationsbereiche in anderen Spezies vorherzusagen, z.B. der Modellpflanzenspezies Arabidopsis thaliana, stützen wir uns auf Schätzungen der kinetischen Parameter (d.h. der katalytischen Enzymraten), da tatsächlich gemessene, pflanzenspezifische katalytische Enzymraten nur unzureichend dokumentiert sind. Unter Verwendung des Constraint-basierten Ansatzes von Davidi et al. zur Abschätzung der katalytischen Enzymraten erhalten wir Werte für 168 pflanzliche Enzyme. Der Ansatz hängt von quantitativen Proteomikdaten und Schätzungen des Reaktionsflusses ab, die aus einem Constraint-basierten Modell des Pflanzenblattmetabolismus unter Einbeziehung der maximalen Raten ausgewählter Enzyme, pflanzenspezifischen Einschränkungen des Flusses durch kanonische Pfade und Wachstumsmessungen aus Rosetten von Arabidopsis thaliana unter zehn Bedingungen erhalten wurden. Wir fanden einen niedrigen Grad an Sättigung der Pflanzenenzyme, der durch die Übereinstimmung zwischen den Konzentrationen von Nicotinamidadenindinukleotid, Adenosintriphosphat und Glycerinaldehyd-3-phosphat auf der Grundlage unserer maximalen in vivo katalytischen Raten und den verfügbaren quantitativen Metabolomikdaten gestützt wird. Daher zeigen unsere Ergebnisse, dass genomweite Schätzungen für pflanzenspezifische Enzymkatalyseraten möglich sind. Diese können nun leicht verwendet werden, um die Ressourcenzuweisung zu untersuchen und die Enzym- und Metabolitenkonzentrationen unter Verwendung neuerer Constraint-basierter Modellierungsansätze vorherzusagen. Constraint-basierte Methoden berücksichtigen kinetische Mechanismen und entsprechende Parameter nicht direkt. Daher wurden einige Methoden entwickelt, welche die Reaktionskinetik approximieren und systemumfassende kinetische Modelle zu parametrisieren. Wir präsentieren eine systembiologische Strategie zur Erstellung eines vollständig parametrisierten Modells von Chlamydomonas reinhardtii, welches die Mikrokompartimentierung im Chloroplaststroma berücksichtigt. Eukaryotische Algen besitzen ein Mikrokompartiment, den Pyrenoiden, der für den Kohlenstoffkonzentrationsmechanismus (KKM) unerlässlich ist und die Photosyntheseleistung verbessert. Die experimentelle Untersuchung der Auswirkungen der Mikrokompartimentierung auf Stoffwechselwege stellt eine Herausforderung dar. Daher verwenden wir unser Modell um die Kompartimentierung von Reaktionsflüssen durch den Calvin-Benson-Zyklus zwischen Pyrenoid und Stroma zu untersuchen. Unser Modell sagt voraus, dass Ribulose-1,5-Bisphosphat, das Substrat von Rubisco, und 3-Phosphoglycerat , das Produkt, in den Pyrenoid hinein und aus ihm heraus diffundieren. Weiter stellen wir fest, dass es keine wesentliche Diffusionsbarriere zwischen dem Pyrenoid und dem Stroma gibt. Somit bietet unser Ansatz eine Möglichkeit um ein Verständnis des mikrokompartimentierten KKM auch in anderen Organismen zu erlangen. Diese Dissertation zeigt neue Strategien um metabolische Netzwerke zur Vorhersage von Metabolitkonzentrationen zu nutzen und selbige zu integrieren. Daher stellen die Ansätze einen wichtigen Schritt zur Anwendbarkeit von genomweiten Stoffwechselmodellen auf eine Reihe von biotechnologischen und medizinischen Anwendungen dar. KW - constraint-based modeling KW - metabolism KW - metabolic networks Y1 - 2020 ER - TY - GEN A1 - Hortobágyi, Tibor A1 - Lesinski, Melanie A1 - Fernandez‐del‐Olmo, Miguel A1 - Granacher, Urs T1 - Small and inconsistent effects of whole body vibration on athletic performance BT - a systematic review and meta-analysis T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Purpose We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Methods Systematic literature review and meta-analysis. Results Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary leg force (−6.4 %, effect size = −0.43, 1 study), leg power (4.7 %, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 %, effect size = −0.12 to 0.22, 2 studies), and athletic performance (−1.9 %, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 % chronic effect on maximal voluntary leg force (14.6 %, weighted mean effect size = 0.44, 5 studies), leg power (10.7 %, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 %, effect size = 0.57 to 0.61, 2 studies), and athletic performance (−1.2 %, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Conclusions Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 627 KW - exercise KW - muscle KW - force KW - power KW - skill KW - reflex KW - endocrine KW - metabolism Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431993 SN - 1866-8364 IS - 627 ER - TY - JOUR A1 - Schwahn, Kevin A1 - Beleggia, Romina A1 - Omranian, Nooshin A1 - Nikoloski, Zoran T1 - Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data JF - Frontiers in plant science N2 - Recent advances in metabolomics technologies have resulted in high-quality (time-resolved) metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA) based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higherorder dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks. KW - metabolism KW - systems biology KW - maximal correlation KW - correlation analysis KW - domestication Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.02152 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Hocher, Berthold A1 - Haumann, Hannah A1 - Rahnenführer, Jan A1 - Reichetzeder, Christoph A1 - Kalk, Philipp A1 - Pfab, Thiemo A1 - Tsuprykov, Oleg A1 - Winter, Stefan A1 - Hofmann, Ute A1 - Li, Jian A1 - Püschel, Gerhard Paul A1 - Lang, Florian A1 - Schuppan, Detlef A1 - Schwab, Matthias A1 - Schaeffeler, Elke T1 - Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner JF - Epigenetics : the official journal of the DNA Methylation Society N2 - Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring's phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood. KW - Epigenetics KW - eNOS KW - Fetal programming KW - fatty liver KW - metabolism Y1 - 2016 U6 - https://doi.org/10.1080/15592294.2016.1184800 SN - 1559-2294 SN - 1559-2308 VL - 11 SP - 539 EP - 552 PB - Routledge, Taylor & Francis Group CY - Philadelphia ER - TY - GEN A1 - Ma, Xuemin A1 - Zhang, Youjun A1 - Turečková, Veronika A1 - Xue, Gang-Ping A1 - Fernie, Alisdair R. A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8'-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 787 KW - abscisic-acid KW - arabidopsis-thaliana KW - chlorophyll degradation KW - aba biosynthesis KW - oryza-sativa KW - rice leaves KW - genes KW - expression KW - metabolism KW - protein Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437643 SN - 1866-8372 IS - 787 ER - TY - THES A1 - Mubeen, Umarah T1 - Regulation of central carbon and nitrogen metabolism by Target of Rapamycin (TOR) kinase in Chlamydomonas reinhardtii T1 - Regulation des zentralen Kohlen- und Stickstoff Stoffwechsels durch die Target of Rapamycin Kinase in der Grünalge Chlamydomonas reinhardtii N2 - The highly conserved protein complex containing the Target of Rapamycin (TOR) kinase is known to integrate intra- and extra-cellular stimuli controlling nutrient allocation and cellular growth. This thesis describes three studies aimed to understand how TOR signaling pathway influences carbon and nitrogen metabolism in Chlamydomonas reinhardtii. The first study presents a time-resolved analysis of the molecular and physiological features across the diurnal cycle. The inhibition of TOR leads to 50% reduction in growth followed by nonlinear delays in the cell cycle progression. The metabolomics analysis showed that the growth repression is mainly driven by differential carbon partitioning between anabolic and catabolic processes. Furthermore, the high accumulation of nitrogen-containing compounds indicated that TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. In the second study the cause of the high accumulation of amino acids is explained. For this purpose, the effect of TOR inhibition on Chlamydomonas was examined under different growth regimes using stable 13C- and 15N-isotope labeling. The data clearly showed that an increased nitrogen uptake is induced within minutes after the inhibition of TOR. Interestingly, this increased N-influx is accompanied by increased activities of nitrogen assimilating enzymes. Accordingly, it was concluded that TOR inhibition induces de-novo amino acid synthesis in Chlamydomonas. The recognition of this novel process opened an array of questions regarding potential links between central metabolism and TOR signaling. Therefore a detailed phosphoproteomics study was conducted to identify the potential substrates of TOR pathway regulating central metabolism. Interestingly, some of the key enzymes involved in carbon metabolism as well as amino acid synthesis exhibited significant changes in the phosphosite intensities immediately after TOR inhibition. Altogether, these studies provide a) detailed insights to metabolic response of Chlamydomonas to TOR inhibition, b) identification of a novel process causing rapid upshifts in amino acid levels upon TOR inhibition and c) finally highlight potential targets of TOR signaling regulating changes in central metabolism. Further biochemical and molecular investigations could confirm these observations and advance the understanding of growth signaling in microalgae. N2 - Target of Rapamycin (TOR) ist das Zentralprotein eines hochkonservierten Proteinkomplexes, welcher Nährstoff- und Energie Ressourcen für zelluläre Wachstumsprozesse kontengiert. Diese Doktorarbeit beschreibt anhand dreier Studien, wie TOR zu diesem Zweck, in der Grünalge Chlamydomonas reinhardtii, den zentralen Stoffwechsel reguliert. Die erste Studie untersucht dazu das zeitaufgelöste Verhalten von Biomolekülen im Tagesverlauf synchronisiert wachsender Algen. Dabei konnte gezeigt werden, das der TOR Inhibitor Rapamycin das Wachstum um 50% reduziert und den Zellzyklus verzögert. Die Zellzyklus Verzögerung scheint dabei hauptsächlich durch veränderte Stoffwechselprozesse erklärt zu sein. Hierbei konnte gezeigt werden, dass TOR vor allem stickstoffhaltige Stoffwechselprodukte (z.B. Aminosäuren) kontrolliert, welche die Grundlage für Biomasseproduktion, Wachstum und den Zellzyklus bilden. Im Rahmen der zweiten Studie konnte dann der molekulare Mechanismus der Akkumulation der zellulären Aminosäuren aufgeklärt werden. Zu diesem Zweck wurden Fütterungsstudien mit 13C- und 15N-Isotopen durchgeführt. Die Ergebnisse dieser Fütterung konnten klar zeigen, dass die Inhibition von TOR zur verstärkten Aufnahme von Stickstoff in die Zelle und dessen Assimilierung in Aminosäuren führt. Die Aufdeckung dieses neuen, von TOR gesteuerten Prozesses eröffnete somit die Frage, wie die Signalkaskade von TOR zu den Enzymen der Aminosäuresynthese verläuft. Detaillierte phosphoproteomische Studien sollten dieser Frage nachgehen und Zielprotein der TOR Kinase zu identifizieren und regulierte Stoffwechselprozesses zu finden. Dabei stellte sich heraus, dass sowohl verschiedene Enzyme der Aminosäuresynthese als auch Enzyme des zentralen Stoffwechsels innerhalb weniger Minuten stark verändert wurden. Zusammenfassend kann man festhalten das die vorliegende Arbeit detaillierte Stoffwechselanalysen des Stoffwechsels nach einer TOR Inhibition aufdeckt. Hierbei ein neuer Mechanismus zur Regulation der Aminosäuresynthese, nach TOR Inhibition gezeigt werden konnte, welche durch systemische Regulation der Phosphorylierungsmuster zellulärer Proteine kontrolliert wird. Zusätzliche molekulare und biochemische Studien konnten weiterhin zeigen, dass wie TOR das zelluläre Wachstum der photosynthetischen Grünalge kontrolliert und somit steuert. KW - Target of Rapamycin kinase KW - Growth signaling KW - metabolism KW - phosphoproteomics KW - Chlamydomonas KW - Target of Rapamycin kinase KW - Wachstumssignale KW - Stoffwechsel KW - Phosphoproteomik KW - Chlamydomonas Y1 - 2018 ER - TY - THES A1 - Rodriguez Cubillos, Andres Eduardo T1 - Understanding the impact of heterozygosity on metabolism, growth and hybrid necrosis within a local Arabidopsis thaliana collection site T1 - Den Einfluss von Heterozygotie auf Stoffwechsel, Wachstum und Hybridnekrose innerhalb einer lokalen Arabidopsis thaliana-Sammelstelle verstehen N2 - Plants are unable to move away from unwanted environments and therefore have to locally adapt to changing conditions. Arabidopsis thaliana (Arabidopsis), a model organism in plant biology, has been able to rapidly colonize a wide spectrum of environments with different biotic and abiotic challenges. In recent years, natural variation in Arabidopsis has shown to be an excellent resource to study genes underlying adaptive traits and hybridization’s impact on natural diversity. Studies on Arabidopsis hybrids have provided information on the genetic basis of hybrid incompatibilities and heterosis, as well as inheritance patterns in hybrids. However, previous studies have focused mainly on global accessions and yet much remains to be known about variation happening within a local growth habitat. In my PhD, I investigated the impact of heterozygosity at a local collection site of Arabidopsis and its role in local adaptation. I focused on two different projects, both including hybrids among Arabidopsis individuals collected around Tübingen in Southern Germany. The first project sought to understand the impact of hybridization on metabolism and growth within a local Arabidopsis collection site. For this, the inheritance patterns in primary and secondary metabolism, together with rosette size of full diallel crosses among seven parents originating from Southern Germany were analyzed. In comparison to primary metabolites, compounds from secondary metabolism were more variable and showed pronounced non-additive inheritance patterns. In addition, defense metabolites, mainly glucosinolates, displayed the highest degree of variation from the midparent values and were positively correlated with a proxy for plant size. In the second project, the role of ACCELERATED CELL DEATH 6 (ACD6) in the defense response pathway of Arabidopsis necrotic hybrids was further characterized. Allelic interactions of ACD6 have been previously linked to hybrid necrosis, both among global and local Arabidopsis accessions. Hence, I characterized the early metabolic and ionic changes induced by ACD6, together with marker gene expression assays of physiological responses linked to its activation. An upregulation of simple sugars and metabolites linked to non-enzymatic antioxidants and the TCA cycle were detected, together with putrescine and acids linked to abiotic stress responses. Senescence was found to be induced earlier in necrotic hybrids and cytoplasmic calcium signaling was unaffected in response to temperature. In parallel, GFP-tagged constructs of ACD6 were developed. This work therefore gave novel insights on the role of heterozygosity in natural variation and adaptation and expanded our current knowledge on the physiological and molecular responses associated with ACD6 activation. N2 - Pflanzen sind sessile Organismen, die nicht in der Lage sind sich unerwünschten Lebensräumen zu entziehen, sodass sie sich an verschiedene Umweltbedingungen anpassen müssen. Arabidopsis thaliana (Arabidopsis) als Modellorganismus der Pflanzenbiologie war in der Lage eine Vielzahl von Lebensräumen zu kolonisieren und dabei verschiedenen biotischen und abiotischen Problemen zu trotzen. Natürliche Variation in Arabidopsis hat sich in den letzten Jahren als Mittel bewährt, um Gene zu analysieren, welche für adaptive Eigenschaften und natürliche Vielfalt verantwortlich sind. Studien über Arabidopsis-Hybride haben Erkenntnisse über die genetische Basis von Hybridinkompatibilitäten, Heterosis und Vererbungsmustern von Hybriden geliefert. Jedoch haben diese sich bisher lediglich mit globalen ökotyp befasst, sodass noch viele Informationen über Variation in einem lokalen Wachstumsgebiet fehlen. In meiner Doktorarbeit habe ich den Einfluss von Heterozygotie in einer lokalen Arabidopsis-Population und deren Rolle bei der Adaption untersucht. Dabei habe ich mich auf zwei Themen fokussiert. Beide Themen beinhalteten Arabidopsis-Hybride zwischen Individuen, welche in der Region um Tübingen in Deutschland gesammelt wurden. Das erste Projekt zielte darauf ab, den Einfluss der Hybridisierung auf den Metabolismus und das Wachstum der Pflanzen in einer lokalen Arabidopsis-Population zu verstehen. Dafür wurden das Vererbungsmuster von Primär- und Sekundärmetaboliten, sowie die Rosettengröße von diallelen Kreuzungen zwischen sieben Elternpflanzen analysiert. Im Vergleich zum Primärstoffwechsel variierten Sekundärmetabolite stärker und zeigten nicht-additive Vererbungsmuster. Zusätzlich zeigten Abwehrstoffe – hauptsächlich Glukosinolate – die höchste Abweichung vom Mittelwert beider Eltern und waren in positiver Korrelation mit der Größe der Pflanzen. In dem zweiten Projekt wurde die Rolle von ACCELERATED CELL DEATH 6 (ACD6) im Abwehrsignalweg von nekrotischen Arabidopsis-Hybriden detaillierter charakterisiert. Da die genetische Interaktion zwischen ACD6-Allelen von globalen und lokalen Arabidopsis-ökotypen bereits mit Hybridnekrose verknüpft wurde, habe ich frühe Metaboliten-, Ionen- und Expressionsänderungen von Markergenen charakterisiert, welche durch die Aktivierung von ACD6 induziert wurden. Eine Erhöhung von einfachen Zuckern und Metaboliten nicht-enzymatischer Antioxidantien und dem TCA-Zyklus wurde detektiert, sowie von Putrescin und anderen Säuren abiotischer Stressantworten. Es wurde nachgewiesen, dass Seneszenz früher in nekrotischen Hybriden induziert und zytoplasmatisches Calcium-Signaling nicht durch Temperatur beeinflusst wurde. Zusätzlich wurden GFP-markierte Konstrukte von ACD6 generiert. Zusammenfassend kann gesagt werden, dass diese Arbeit weitere Erkenntnisse über die Rolle von Heterozygotie in natürlicher Variation und Adaptation liefert und sie unser Wissen über die physiologischen und molekularen Veränderungen, verursacht durch die ACD6-Aktivierung, erweitert. KW - arabidopsis KW - diallel KW - nonadditive KW - inheritance KW - metabolism KW - variation KW - ACD6 KW - adaptation KW - defense KW - necrosis KW - Arabidopsis KW - Dialel KW - nicht additiv KW - Erbe KW - Stoffwechsel KW - Variation KW - ACD6 KW - Anpassung KW - Verteidigung KW - Nekrose Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-416758 ER - TY - JOUR A1 - Catchpole, Gareth A1 - Platzer, Alexander A1 - Weikert, Cornelia A1 - Kempkensteffen, Carsten A1 - Johannsen, Manfred A1 - Krause, Hans A1 - Jung, Klaus A1 - Miller, Kurt A1 - Willmitzer, Lothar A1 - Selbig, Joachim A1 - Weikert, Steffen T1 - Metabolic profiling reveals key metabolic features of renal cell carcinoma JF - Journal of cellular and molecular medicine : a journal of translational medicine N2 - Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phosphate metabolism determined the metabolic profile of RCC. alpha-tocopherol, hippuric acid, myoinositol, fructose-1-phosphate and glucose-1-phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The identified metabolic profile was characterized by a low recognition error of only 5% for tumour versus normal samples. Data on metastasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricarboxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds, hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC. KW - kidney cancer KW - metabolism KW - metabolomics KW - metastasis Y1 - 2011 U6 - https://doi.org/10.1111/j.1582-4934.2009.00939.x SN - 1582-1838 VL - 15 IS - 1 SP - 109 EP - 118 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Islam, Khan M. Shaiful A1 - Schaeublin, H. A1 - Wenk, C. A1 - Wanner, Michael A1 - Liesegang, Annette T1 - Effect of dietary citric acid on the performance and mineral metabolism of broiler JF - Journal of animal physiology and animal nutrition N2 - The objective of this study was to investigate the effect of dietary citric acid (CA) on the performance and mineral metabolism of broiler chicks. A total of 1720 Ross PM3 broiler chicks (days old) were randomly assigned to four groups (430 in each) and reared for a period of 35 days. The diets of groups 1, 2, 3 and 4 were supplemented with 0%, 0.25%, 0.75% or 1.25% CA by weight respectively. Feed and faeces samples were collected weekly and analysed for acid insoluble ash, calcium (Ca), phosphorus (P) and magnesium (Mg). The pH was measured in feed and faeces. At the age of 28 days, 10 birds from each group were slaughtered; tibiae were collected from each bird for the determination of bone mineral density, total ash, Ca, P, Mg and bone-breaking strength, and blood was collected for the measurement of osteocalcin, serum CrossLaps (R), Ca, P, Mg and 1,25(OH)(2)Vit-D in serum. After finishing the trial on day 37, all chicks were slaughtered by using the approved procedure. Birds that were fed CA diets were heavier (average body weights of 2030, 2079 and 2086 g in the 0.25%, 0.75% and 1.25% CA groups, respectively, relative to the control birds (1986 g). Feed conversion efficiency (weight gain in g per kg of feed intake) was also higher in birds of the CA-fed groups (582, 595 and 587 g/kg feed intake for 0.25%, 0.75% and 1.25% CA respectively), relative to the control birds (565 g/kg feed intake). The digestibility of Ca, P and Mg increased in the CA-fed groups, especially for the diets supplemented with 0.25% and 0.75% CA. Support for finding was also indicated in the results of the analysis of the tibia. At slaughter, the birds had higher carcass weights and higher graded carcasses in the groups that were fed the CA diets. The estimated profit margin was highest for birds fed the diet containing 0.25% CA. Birds of the 0.75% CA group were found to have the second highest estimated profit margin. Addition of CA up to a level of 1.25% of the diet increased performance, feed conversion efficiency, carcass weight and carcass quality, but only in numerical terms. The addition of CA up to 0.75% significantly increased the digestibility of macro minerals, bone ash content, bone mineral density and bone strength of the broiler chicks. It may, therefore, be concluded that the addition of 0.75% CA in a standard diet is suitable for growth, carcass traits, macromineral digestibility and bone mineral density of broiler chicks. KW - broiler chicks KW - dietary citric acid KW - calcium KW - phosphorus KW - metabolism KW - performance Y1 - 2012 U6 - https://doi.org/10.1111/j.1439-0396.2011.01225.x SN - 0931-2439 VL - 96 IS - 5 SP - 808 EP - 817 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wagner, Nicole D. A1 - Hillebrand, Helmut A1 - Wacker, Alexander A1 - Frost, Paul C. T1 - Nutritional indicators and their uses in ecology JF - Ecology letters N2 - The nutrition of animal consumers is an important regulator of ecological processes due to its effects on their physiology, life-history and behaviour. Understanding the ecological effects of poor nutrition depends on correctly diagnosing the nature and strength of nutritional limitation. Despite the need to assess nutritional limitation, current approaches to delineating nutritional constraints can be non-specific and imprecise. Here, we consider the need and potential to develop new complementary approaches to the study of nutritional constraints on animal consumers by studying and using a suite of established and emerging biochemical and molecular responses. These nutritional indicators include gene expression, transcript regulators, protein profiling and activity, and gross biochemical and elemental composition. The potential applications of nutritional indicators to ecological studies are highlighted to demonstrate the value that this approach would have to future studies in community and ecosystem ecology. KW - Ecological stoichiometry KW - lipid profiling KW - metabolism KW - nutrient-stress KW - nutrition KW - proteomics KW - transcriptomics Y1 - 2013 U6 - https://doi.org/10.1111/ele.12067 SN - 1461-023X VL - 16 IS - 4 SP - 535 EP - 544 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Brothers, Soren M. A1 - Hilt, Sabine A1 - Attermeyer, Katrin A1 - Grossart, Hans-Peter A1 - Kosten, Sarian A1 - Lischke, Betty A1 - Mehner, Thomas A1 - Meyer, Nils A1 - Scharnweber, Inga Kristin A1 - Köhler, Jan T1 - A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake JF - Ecosphere : the magazine of the International Ecology University N2 - Ecological regime shifts and carbon cycling in aquatic systems have both been subject to increasing attention in recent years, yet the direct connection between these topics has remained poorly understood. A four-fold increase in sedimentation rates was observed within the past 50 years in a shallow eutrophic lake with no surface in-or outflows. This change coincided with an ecological regime shift involving the complete loss of submerged macrophytes, leading to a more turbid, phytoplankton-dominated state. To determine whether the increase in carbon (C) burial resulted from a comprehensive transformation of C cycling pathways in parallel to this regime shift, we compared the annual C balances (mass balance and ecosystem budget) of this turbid lake to a similar nearby lake with submerged macrophytes, a higher transparency, and similar nutrient concentrations. C balances indicated that roughly 80% of the C input was permanently buried in the turbid lake sediments, compared to 40% in the clearer macrophyte-dominated lake. This was due to a higher measured C burial efficiency in the turbid lake, which could be explained by lower benthic C mineralization rates. These lower mineralization rates were associated with a decrease in benthic oxygen availability coinciding with the loss of submerged macrophytes. In contrast to previous assumptions that a regime shift to phytoplankton dominance decreases lake heterotrophy by boosting whole-lake primary production, our results suggest that an equivalent net metabolic shift may also result from lower C mineralization rates in a shallow, turbid lake. The widespread occurrence of such shifts may thus fundamentally alter the role of shallow lakes in the global C cycle, away from channeling terrestrial C to the atmosphere and towards burying an increasing amount of C. KW - calcite precipitation KW - CO2 emissions KW - global carbon cycle KW - metabolism KW - regime shift KW - sedimentation KW - submerged macrophytes KW - temperate zone KW - trophic status Y1 - 2013 U6 - https://doi.org/10.1890/ES13-00247.1 SN - 2150-8925 VL - 4 IS - 11 PB - Wiley CY - Washington ER - TY - THES A1 - Dethloff, Frederik T1 - In vivo 13C stable isotope tracing of single leaf development in the cold T1 - Stabile 13C Isotopenmarkierung zur in vivo Untersuchung der Einzelblattentwicklung in der Kälte N2 - Measuring the metabolite profile of plants can be a strong phenotyping tool, but the changes of metabolite pool sizes are often difficult to interpret, not least because metabolite pool sizes may stay constant while carbon flows are altered and vice versa. Hence, measuring the carbon allocation of metabolites enables a better understanding of the metabolic phenotype. The main challenge of such measurements is the in vivo integration of a stable or radioactive label into a plant without perturbation of the system. To follow the carbon flow of a precursor metabolite, a method is developed in this work that is based on metabolite profiling of primary metabolites measured with a mass spectrometer preceded by a gas chromatograph (Wagner et al. 2003; Erban et al. 2007; Dethloff et al. submitted). This method generates stable isotope profiling data, besides conventional metabolite profiling data. In order to allow the feeding of a 13C sucrose solution into the plant, a petiole and a hypocotyl feeding assay are developed. To enable the processing of large numbers of single leaf samples, their preparation and extraction are simplified and optimised. The metabolite profiles of primary metabolites are measured, and a simple relative calculation is done to gain information on carbon allocation from 13C sucrose. This method is tested examining single leaves of one rosette in different developmental stages, both metabolically and regarding carbon allocation from 13C sucrose. It is revealed that some metabolite pool sizes and 13C pools are tightly associated to relative leaf growth, i.e. to the developmental stage of the leaf. Fumaric acid turns out to be the most interesting candidate for further studies because pool size and 13C pool diverge considerably. In addition, the analyses are also performed on plants grown in the cold, and the initial results show a different metabolite pool size pattern across single leaves of one Arabidopsis rosette, compared to the plants grown under normal temperatures. Lastly, in situ expression of REIL genes in the cold is examined using promotor-GUS plants. Initial results suggest that single leaf metabolite profiles of reil2 differ from those of the WT. N2 - Messungen des pflanzlichen Metaboloms können ein hilfreiches Werkzeug sein, um Pflanzen zu phänotypisieren. Jedoch sind die Änderungen der Poolgrößen teilweise schwer zu interpretieren, weil sich nicht nur die Poolgrößen sondern auch die Kohlenstoffflüsse unabhängig voneinander ändern können. Werden nun zusätzlich Informationen über die Flüsse ermittelt, kann der pflanzliche Phänotyp deutlich genauer beschrieben werden. Die größte Herausforderung für diese Messungen ist die In-vivo-Integration einer stabilen oder radioaktiven Markierung in einer Pflanze, ohne das System dabei zu stören. In dieser Arbeit wird ein Verfahren entwickelt, um die Verteilung von Kohlenstoffen aus einer gefütterten Vorstufe zu messen. Die Messung basiert dabei auf einem Primärmetabolitenprofil, das mit Hilfe eines Massenspektrometers mit vorgeschaltetem Gaschromatographen erstellt wird (Wagner et al. 2003; Erban et al. 2007; Dethloff et al. eingereicht). Mit dieser Methode ist es einfach möglich, stabile Isotopenprofildaten neben herkömmlichen Metabolitprofildaten zu erzeugen. Die Vorstufe, in diesem Fall 13C Saccharose, wird dazu mit Hilfe eines neuen Petiolen- und Hypokotyl-Fütterungs-Assay in die Pflanze gefüttert. Um die große Menge an Einzelblattproben aufzuarbeiten, die dabei anfallen, wird eine vereinfachte und optimierte Extraktion angewendet. Mit Hilfe einer einfachen Berechnung kann aus den Messdaten eine relative Verteilung des Kohlenstoffs aus 13C Saccharose bestimmt werden. Die Funktionalität dieses Verfahrens wird an Einzelblättern von Arabidopsis-Rosetten gezeigt, wobei sowohl Primärmetabolitenprofile als auch stabile Isotopenprofile erzeugt und untersucht werden. Es kann hierbei gezeigt werden, dass konventionelle Poolgrößen und 13C Poolgrößen einiger Metaboliten eng mit dem relativen Wachstum einzelner Blattpositionen bzw. mit dem jeweiligen Entwicklungsstadium der Blätter zusammenhängen. Anders als bei den meisten anderen Metaboliten zeigen die konventionellen Poolgrößen und 13C Poolgrößen von Fumarsäure ein unterschiedliches Verhalten in den einzelnen Blättern, was Fumarsäure zum interessantesten Kandidaten für weitere Studien macht. Die beschriebenen Untersuchungen werden weiterhin an in Kälte gewachsenen Pflanzen durchgeführt, wobei erste Ergebnisse ein verändertes Metabolitenprofil in den einzelnen Blättern zeigen. Des Weiteren wird die In-situ-Expression von REIL-Genen mit Hilfe von Promotor-GUS-Reportern untersucht. Erste Ergebnisse von Einzelblatt-Metabolitenprofilen der reil2 zeigen einen deutlichen Unterschied zum WT. KW - stable isotope tracing KW - metabolism KW - sucrose KW - carbon flow KW - qualitative pathway interpretation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70486 ER - TY - THES A1 - Ivakov, Alexander T1 - Metabolic interactions in leaf development in Arabidopsis thaliana T1 - Metabolische Interaktionen während der Blattentwicklung in Arabidopsis thaliana N2 - Das Wachstum und Überleben von Pflanzen basiert auf der Photosynthese in den Blättern. Diese beinhaltet die Aufnahme von Kohlenstoffdioxid aus der Atmosphäre und das simultane Einfangen von Lichtenergie zur Bildung organischer Moleküle. Diese werden nach dem Eintritt in den Metabolismus in viele andere Komponenten umgewandelt, welche die Grundlage für die Zunahme der Biomasse bilden. Blätter sind Organe, die auf die Fixierung von Kohlenstoffdioxid spezialisiert sind. Die Funktionen der Blätter beinhalten vor allem die Optimierung und Feinregulierung vieler Prozesse, um eine effektive Nutzung von Ressourcen und eine maximale Photosynthese zu gewährleisten. Es ist bekannt, dass sich die Morphologie der Blätter den Wachstumsbedingungen der Pflanze anpasst und eine wichtige Rolle bei der Optimierung der Photosynthese spielt. Trotzdem ist die Regulation dieser Art der Anpassung bisher nicht verstanden. Die allgemeine Zielsetzung dieser vorliegenden Arbeit ist das Verständnis wie das Wachstum und die Morphologie der Blätter im Modellorganismus Arabidopsis thaliana reguliert werden. Besondere Aufmerksamkeit wurde hierbei der Möglichkeit geschenkt, dass es interne metabolische Signale in der Pflanze geben könnte, die das Wachstum und die Entwicklung von Blättern beeinflussen. Um diese Fragestellung zu untersuchen, muss das Wachstum und die Entwicklung von Blättern oberhalb des Levels des einzelnen Organs und im Kontext der gesamten Pflanze betrachtet werden, weil Blätter nicht eigenständig wachsen, sondern von Ressourcen und regulatorischen Einflüssen der ganzen Pflanze abhängig sind. Aufgrund der Komplexität dieser Fragestellung wurden drei komplementäre Ansätze durchgeführt. Im ersten und spezifischsten Ansatz wurde untersucht ob eine flussabwärts liegende Komponente des Zucker-Signalwegs, Trehalose-6-Phosphat (Tre-6-P), das Blattwachstum und die Blattentwicklung beinflussen kann. Um diese Frage zu beantworten wurden transgene Arabidopsis-Linien mit einem gestörten Gehalt von Tre-6-P durch die Expression von bakteriellen Proteinen die in dem metabolismus von trehalose beteiligt sind. Die Pflanzen-Linien wurden unter Standard-Bendingungen in Erde angebaut und ihr Metabolismus und ihre Blattmorphologie untersucht. Diese Experimente führten auch zu einem unerwarteten Projekt hinsichtlich einer möglichen Rolle von Tre-6-P in der Regulation der Stomata. In einem zweiten, allgemeineren Ansatz wurde untersucht, ob Änderungen im Zucker-Gehalt der Pflanzen die Morphogenese der Blätter als Antwort auf Licht beeinflussen. Dazu wurden eine Reihe von Mutanten, die im Zentralmetabolismus beeinträchtigt sind, in derselben Lichtbedingung angezogen und bezüglich ihrer Blattmorphologie analysiert. In einem dritten noch allgemeineren Ansatz wurde die natürliche Variation von morphologischen Ausprägungen der Blätter und Rosette anhand von wilden Arabidopsis Ökotypen untersucht, um zu verstehen wie sich die Blattmorphologie auf die Blattfunktion und das gesamte Pflanzenwachstum auswirkt und wie unterschiedliche Eigenschaften miteinander verknüpft sind. Das Verhältnis der Blattanzahl zum Gesamtwachstum der Pflanze und Blattgröße wurde gesondert weiter untersucht durch eine Normalisierung der Blattanzahl auf das Frischgewicht der Rosette, um den Parameter „leafing Intensity“ abzuschätzen. Leafing Intensity integrierte Blattanzahl, Blattgröße und gesamtes Rosettenwachstum in einer Reihe von Kompromiss-Interaktionen, die in einem Wachstumsvorteil resultieren, wenn Pflanzen weniger, aber größere Blätter pro Einheit Biomasse ausbilden. Dies führte zu einem theoretischen Ansatz in dem ein einfaches allometrisch mathematisches Modell konstruiert wurde, um Blattanzahl, Blattgröße und Pflanzenwachstum im Kontext der gesamten Pflanze Arabidopsis zu verknüpfen. N2 - Plant growth and survival depend on photosynthesis in the leaves. This involves the uptake of carbon dioxide from the atmosphere and the simultaneous capture of light energy to produce organic molecules, which enter metabolism and are converted to many other compounds which then serve as building blocks for biomass growth. Leaves are organs specialised for photosynthetic carbon dioxide fixation. The function of leaves involves many trade-offs which must be optimised in order to achieve effective use of resources and maximum photosynthesis. It is known that the morphology of leaves adjusts to the growth environment of plants and this is important for optimising their function for photosynthesis. However, it is unclear how this adjustment is regulated. The general aim of the work presented in this thesis is to understand how leaf growth and morphology are regulated in the model species Arabidopsis thaliana. Special attention was dedicated to the possibility that there might be internal metabolic signals within the plant which affect the growth and development of leaves. In order to investigate this question, leaf growth and development must be considered beyond the level of the single organ and in the context of the whole plant because leaves do not grow autonomously but depend on resources and regulatory influences delivered by the rest of the plant. Due to the complexity of this question, three complementary approaches were taken. In the first and most specific approach it was asked whether a proposed down-stream component of sucrose signalling, trehalose-6-phosphate (Tre-6-P), might influence leaf development and growth. To investigate this question, transgenic Arabidopsis lines with perturbed levels of Tre-6-P were generated using the constitutive 35S promoter to express bacterial enzymes involved in trehalose metabolism. These experiments also led to an unanticipated project concerning a possible role for Tre-6-P in stomatal function, which is another very important function in leaves. In a second and more general approach it was investigated whether changes in sugar levels in plants affect the morphogenesis of leaves in response to light. For this, a series of metabolic mutants impaired in central metabolism were grown in one light environment and their leaf morphology was analysed. In a third and even more general approach the natural variation in leaf and rosette morphological traits was investigated in a panel of wild Arabidopsis accessions with the aim of understanding how leaf morphology affects leaf function and whole plant growth and how different traits relate to each other. The analysis included measurements of leaf morphological traits as well as the number of leaves in the plant to put leaf morphology in a whole plant context. The variance in plant growth could not be explained by variation in photosynthetic rates and only to a small degree by variation in rates of dark respiration. There were four key axes of variation in rosette and leaf morphology – leaf area growth, leaf thickness, cell expansion and leaf number. These four processes were integrated in the context of whole plant growth by models that employed a multiple linear regression approach. This then led to a theoretical approach in which a simple allometric mathematical model was constructed, linking leaf number, leaf size and plant growth rate together in a whole plant context in Arabidopsis. KW - Blattmorphologie KW - Entwicklung KW - Arabidopsis KW - Metabolismus KW - Ökotypen KW - leaf KW - morphology KW - Arabidopsis KW - metabolism KW - accessions Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59730 ER - TY - THES A1 - Riewe, David T1 - The relevance of adenylate levels and adenylate converting enzymes on metabolism and development of potato (Solanum tuberosum L.) tubers T1 - Einfluss der Adenylate und Adenylat-umsetzender Enzyme auf Entwicklung und Stoffwechsel der Kartoffelknolle (Solanum Tuberosum L.) N2 - Adenylates are metabolites with essential function in metabolism and signaling in all living organisms. As Cofactors, they enable thermodynamically unfavorable reactions to be catalyzed enzymatically within cells. Outside the cell, adenylates are involved in signalling processes in animals and emerging evidence suggests similar signaling mechanisms in the plants’ apoplast. Presumably, apoplastic apyrases are involved in this signaling by hydrolyzing the signal mediating molecules ATP and ADP to AMP. This PhD thesis focused on the role of adenylates on metabolism and development of potato (Solanum tuberosum) by using reverse genetics and biochemical approaches. To study the short and long term effect of cellular ATP and the adenylate energy charge on potato tuber metabolism, an apyrase from Escherichia coli targeted into the amyloplast was expressed inducibly and constitutively. Both approaches led to the identification of adaptations to reduced ATP/energy charge levels on the molecular and developmental level. These comprised a reduction of metabolites and pathway fluxes that require significant amounts of ATP, like amino acid or starch synthesis, and an activation of processes that produce ATP, like respiration and an immense increase in the surface-to-volume ratio. To identify extracellular enzymes involved in adenylate conversion, green fluorescent protein and activity localization studies in potato tissue were carried out. It was found that extracellular ATP is imported into the cell by an apoplastic enzyme complement consisting of apyrase, unspecific phosphatase, adenosine nucleosidase and an adenine transport system. By changing the expression of a potato specific apyrase via transgenic approaches, it was found that this enzyme has strong impact on plant and particular tuber development in potato. Whereas metabolite levels were hardly altered, transcript profiling of tubers with reduced apyrase activity revealed a significant upregulation of genes coding for extensins, which are associated with polar growth. The results are discussed in context of adaptive responses of plants to changes in the adenylate levels and the proposed role of apyrase in apoplastic purinergic signaling and ATP salvaging. In summary, this thesis provides insight into adenylate regulated processes within and outside non-photosynthetic plant cells. N2 - Adenylate haben essentielle Funktionen in Stoffwechselprozessen und fungieren als Signalmoleküle in allen Organismen. Als Cofaktoren ermöglichen sie die Katalyse thermodynamisch ungünstiger Reaktionen innerhalb der Zelle, und außerhalb der Zelle wirken sie als Signalmoleküle in Tieren und nach neueren Forschungsergebnissen wohl auch in Pflanzen. Vermutlich wird die Signalwirkung von ATP und ADP durch Hydrolyse zu AMP unter Beteiligung apoplastische Apyrasen terminiert. Diese Arbeit behandelt den Einfluss der Adenylate auf Stoffwechsel- und Entwicklungsprozesse in der Kartoffelpflanze (Solanum tuberosum) mittels biochemischer und revers-genetischer Ansätze. Um kurzfristige und langfristige Einflüsse zellulären ATPs und der Energieladung auf den Stoffwechsel von Kartoffelknollen zu untersuchen, wurde eine mit einem plastidären Transitpeptid fusionierte Apyrase aus Escherichia coli induzierbar und dauerhaft exprimiert. Beide Ansätze führten zur Identifizierung von Anpassungen an eine reduzierte ATP Verfügbarkeit bzw. verringerte Energieladung. Die Anpassungen beinhalteten eine Reduzierung von ATP-verbrauchenden Stoffwechselaktivitäten und Stoffwechselprodukten, wie die Aminosäure- oder Stärkesynthese, und eine Aktivierung von Prozessen, welche die ATP-Bildung oder eine effizientere ATP-Bildung ermöglichen, wie Zellatmung und die Vergrößerung des Oberfächen/Volumen-Verhältnisses der Kartoffelknolle. Extrazelluläre Adenylat-umsetzende Enzyme wurden mit Hilfe des grün fluoreszierenden Proteins und Aktivitätsmessungen identifiziert und charakterisiert. Es wurde ein potentieller ATP Bergungsstoffwechselweg gefunden, der ATP über die Enzyme Apyrase, unspezifische Phosphatase und Adenosin-Nukleosidase zu Adenin umsetzt, welches über eine Purin-Permease in die Zelle transportiert wird. Transgene Manipulation der Aktivität der kartoffelspezifischen Apyrase zeigte, dass dieses Enzym einen großen Einfluss auf die Pflanzen-, insbesondere die Knollenentwicklung hat. Obwohl sich Stoffwechselaktivitäten kaum verändert hatten, führte die Verringerung der Apyrase Aktivität in den Knollen zur übermäßigen Expression von Extensin-Genen, die eine Funktion im polaren Wachstum von Pflanzenzellen besitzen. Die Ergebnisse wurden mit Hinblick auf Anpassungen der Pflanze an veränderte Adenylat-Spiegel und der potentiellen Beteiligung der endogenen Apyrase an einem apoplastischen ATP-Signalweg bzw. ATP-Bergungsstoffwechselweg diskutiert. Zusammengefasst, präsentiert diese Arbeit neue Einsichten in Adenylat-regulierte Prozesse in- und außerhalb nicht-photosynthetischer Pflanzenzellen. KW - Apyrase KW - ATP KW - Kartoffel KW - Stoffwechsel KW - Nukleosidase KW - apyrase KW - ATP KW - potato KW - metabolism KW - nucleosidase Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-27323 ER -