TY - JOUR A1 - Schälicke, Svenja A1 - Heim, Silvia A1 - Martin-Creuzburg, Dominik A1 - Wacker, Alexander T1 - Inter- and intraspecific differences in rotifer fatty acid composition during acclimation to low-quality food JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Biochemical food quality constraints affect the performance of consumers and mediate trait variation among and within consumer species. To assess inter- and intraspecific differences in fatty acid retention and conversion in freshwater rotifers, we provided four strains of two closely related rotifer species,Brachionus calyciflorussensustricto andBrachionus fernandoi, with food algae differing in their fatty acid composition. The rotifers grazed for 5 days on eitherNannochloropsis limneticaorMonoraphidium minutum, two food algae with distinct polyunsaturated fatty acid (PUFA) profiles, before the diets were switched to PUFA-freeSynechococcus elongatus, which was provided for three more days. We found between- and within-species differences in rotifer fatty acid compositions on the respective food sources and, in particular, highly specific acclimation reactions to the PUFA-free diet. The different reactions indicate inter- but also intraspecific differences in physiological traits, such as PUFA retention, allocation and bioconversion capacities, within the genusBrachionusthat are most likely accompanied by differences in their nutritional demands. Our data suggest that biochemical food quality constraints act differently on traits of closely related species and of strains of a particular species and thus might be involved in shaping ecological interactions and evolutionary processes. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'. KW - Brachionus KW - fatty acids KW - food quality KW - PUFA composition KW - rotifer KW - strains KW - trait variation Y1 - 2020 U6 - https://doi.org/10.1098/rstb.2019.0644 SN - 0962-8436 SN - 1471-2970 VL - 375 IS - 1804 PB - Royal Society CY - London ER - TY - JOUR A1 - Martin-Creuzburg, Dominik A1 - Massier, Tamara A1 - Wacker, Alexander T1 - Sex-Specific differences in essential lipid requirements of Daphnia magna JF - Frontiers in Ecology and Evolution N2 - Sex-specific differences in nutritional requirements may crucially influence the performances of the sexes, which may have implications for sexual reproduction and thus is of great ecological and evolutionary interest. In the freshwater model species Daphnia magna, essential lipid requirements have been extensively studied. Dietary deficiencies in sterols and polyunsaturated fatty acids (PUFA) have been shown to constrain somatic growth and parthenogenetic reproduction of female Daphnia. In contrast, nutrient requirements of male Daphnia have not been studied yet. Supplementation experiments were conducted to investigate differences in sterol (cholesterol) and PUFA (eicosapentaenoic acid, EPA) requirements between female and male D. magna. Thresholds for sterol-limited juvenile growth were higher in females than in males, suggesting that females are more susceptible to dietary sterol deficiencies than males. Sex-specific differences in maximum somatic growth rates were evident primarily in the presence of dietary EPA; females could not exploit their generally higher growth potential in the absence of dietary PUFA. However, the thresholds for EPA-limited growth did not differ between sexes, suggesting that both sexes have similar dietary EPA requirements during juvenile growth. During a life history experiment, the gain in body dry mass was higher in females than in males, irrespective of food treatment. In both sexes, the gain in body dry mass increased significantly upon EPA supplementation, indicating that both sexes benefited from dietary EPA supply also later in life. However, the positive effects of EPA supplementation were most pronounced for female reproduction-related traits (i.e., clutch sizes, egg dry masses, and total dry mass investment in reproduction). The high maternal investment in reproduction resulted in a depletion of nutrients in female somata. In contrast, the comparatively low paternal investment in reproduction allowed for the accumulation of nutrients in male somata. We conclude that males are generally less susceptible to dietary nutrient deficiencies than females, because they can rely more on internal body stores. Our data suggest that the performances of the sexes are differentially influenced by lipid-mediated food quality, which may have consequences for sexual reproduction and thus the production of resting eggs and the maintenance of Daphnia populations. KW - allocation KW - cholesterol KW - eicosapentaenoic acid KW - food quality KW - male Daphnia KW - polyunsaturated fatty acids KW - sterols KW - lipid limitation thresholds Y1 - 2018 U6 - https://doi.org/10.3389/fevo.2018.00089 SN - 2296-701X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Martin-Creuzburg, Dominik A1 - Massier, Tamara A1 - Wacker, Alexander T1 - Sex-specific differences in essential lipid requirements of Daphnia magna T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Sex-specific differences in nutritional requirements may crucially influence the performances of the sexes, which may have implications for sexual reproduction and thus is of great ecological and evolutionary interest. In the freshwater model species Daphnia magna, essential lipid requirements have been extensively studied. Dietary deficiencies in sterols and polyunsaturated fatty acids (PUFA) have been shown to constrain somatic growth and parthenogenetic reproduction of female Daphnia. In contrast, nutrient requirements of male Daphnia have not been studied yet. Supplementation experiments were conducted to investigate differences in sterol (cholesterol) and PUFA (eicosapentaenoic acid, EPA) requirements between female and male D. magna. Thresholds for sterol-limited juvenile growth were higher in females than in males, suggesting that females are more susceptible to dietary sterol deficiencies than males. Sex-specific differences in maximum somatic growth rates were evident primarily in the presence of dietary EPA; females could not exploit their generally higher growth potential in the absence of dietary PUFA. However, the thresholds for EPA-limited growth did not differ between sexes, suggesting that both sexes have similar dietary EPA requirements during juvenile growth. During a life history experiment, the gain in body dry mass was higher in females than in males, irrespective of food treatment. In both sexes, the gain in body dry mass increased significantly upon EPA supplementation, indicating that both sexes benefited from dietary EPA supply also later in life. However, the positive effects of EPA supplementation were most pronounced for female reproduction-related traits (i.e., clutch sizes, egg dry masses, and total dry mass investment in reproduction). The high maternal investment in reproduction resulted in a depletion of nutrients in female somata. In contrast, the comparatively low paternal investment in reproduction allowed for the accumulation of nutrients in male somata. We conclude that males are generally less susceptible to dietary nutrient deficiencies than females, because they can rely more on internal body stores. Our data suggest that the performances of the sexes are differentially influenced by lipid-mediated food quality, which may have consequences for sexual reproduction and thus the production of resting eggs and the maintenance of Daphnia populations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1050 KW - allocation KW - cholesterol KW - eicosapentaenoic acid KW - food quality KW - male Daphnia KW - polyunsaturated fatty acids KW - sterols KW - lipid limitation thresholds Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469099 SN - 1866-8372 IS - 1050 ER - TY - JOUR A1 - Denoux, Clemence A1 - Martin-Creuzburg, Dominik A1 - Koussoroplis, Apostolos-Manuel A1 - Perriere, Fanny A1 - Desvillettes, Christian A1 - Bourdier, Gilles A1 - Bec, Alexandre T1 - Phospholipid-bound eicosapentaenoic acid (EPA) supports higher fecundity than free EPA in Daphnia magna JF - Journal of plankton research N2 - Nutrition bioassays in which polyunsaturated fatty acids (PUFA)-deficient diets were supplemented with free long-chain PUFA (>= C20) consistently revealed positive effects on somatic growth and fecundity of Daphnia. However, free PUFA are hardly available in natural diets. In general, PUFA are bound to other lipids, especially to phospholipids and triglycerides. Here, we evaluate the potential of free and phospholipid-bound dietary eicosapentaenoic acid (EPA) to support somatic growth and fecundity of Daphnia magna. In a growth experiment, supplementation of a C20 PUFA-deficient diet with free or phospholipid-bound EPA improved somatic growth rates of D. magna equally. However, the increase in fecundity was significantly more pronounced when phospholipid-bound EPA was provided. Free and phospholipid-bound EPA were provided in the same concentrations in our experiment, suggesting that the allocation to reproduction-related processes is affected differently by phospholipid-bound PUFA and free PUFA. Our finding stresses the need to consider the distribution of dietary PUFA in different lipid classes to gain a better understanding of how PUFA influence life history traits of Daphnids in the field. KW - Daphnia magna KW - food quality KW - phospholipids KW - polyunsaturated fatty acids KW - reproduction KW - somatic growth KW - trophic interactions Y1 - 2017 U6 - https://doi.org/10.1093/plankt/fbx037 SN - 0142-7873 SN - 1464-3774 VL - 39 SP - 843 EP - 848 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Sperfeld, Erik A1 - Martin-Creuzburg, Dominik A1 - Wacker, Alexander T1 - Multiple resource limitation theory applied to herbivorous consumers Liebig's minimum rule vs. interactive co-limitation JF - Ecology letters N2 - There is growing consensus that the growth of herbivorous consumers is frequently limited by more than one nutrient simultaneously. This understanding, however, is based primarily on theoretical considerations and the applicability of existing concepts of co-limitation has rarely been tested experimentally. Here, we assessed the suitability of two contrasting concepts of resource limitation, i.e. Liebigs minimum rule and the multiple limitation hypothesis, to describe nutrient-dependent growth responses of a freshwater herbivore (Daphnia magna) in a system with two potentially limiting nutrients (cholesterol and eicosapentaenoic acid). The results indicated that these essential nutrients interact, and do not strictly follow Liebigs minimum rule, which consistently overestimates growth at co-limiting conditions and thus is not applicable to describe multiple nutrient limitation of herbivorous consumers. We infer that the outcome of resource-based modelling approaches assessing herbivore population dynamics strongly depends on the applied concept of co-limitation. KW - Cholesterol KW - Daphnia magna KW - eicosapentaenoic acid KW - essential resources KW - food quality KW - herbivore KW - multi-nutrient limitation KW - nutritional ecology KW - von Liebig Y1 - 2012 U6 - https://doi.org/10.1111/j.1461-0248.2011.01719.x SN - 1461-023X VL - 15 IS - 2 SP - 142 EP - 150 PB - Wiley-Blackwell CY - Malden ER -