TY - JOUR A1 - Krämer, Hauke Kai A1 - Gelbrecht, Maximilian A1 - Pavithran, Induja A1 - Sujith, Ravindran A1 - Marwan, Norbert T1 - Optimal state space reconstruction via Monte Carlo decision tree search JF - Nonlinear Dynamics N2 - A novel idea for an optimal time delay state space reconstruction from uni- and multivariate time series is presented. The entire embedding process is considered as a game, in which each move corresponds to an embedding cycle and is subject to an evaluation through an objective function. This way the embedding procedure can be modeled as a tree, in which each leaf holds a specific value of the objective function. By using a Monte Carlo ansatz, the proposed algorithm populates the tree with many leafs by computing different possible embedding paths and the final embedding is chosen as that particular path, which ends at the leaf with the lowest achieved value of the objective function. The method aims to prevent getting stuck in a local minimum of the objective function and can be used in a modular way, enabling practitioners to choose a statistic for possible delays in each embedding cycle as well as a suitable objective function themselves. The proposed method guarantees the optimization of the chosen objective function over the parameter space of the delay embedding as long as the tree is sampled sufficiently. As a proof of concept, we demonstrate the superiority of the proposed method over the classical time delay embedding methods using a variety of application examples. We compare recurrence plot-based statistics inferred from reconstructions of a Lorenz-96 system and highlight an improved forecast accuracy for map-like model data as well as for palaeoclimate isotope time series. Finally, we utilize state space reconstruction for the detection of causality and its strength between observables of a gas turbine type thermoacoustic combustor. KW - State space reconstruction KW - Embedding KW - Optimization KW - Time series analysis KW - Causality KW - Prediction KW - Recurrence analysis Y1 - 2022 U6 - https://doi.org/10.1007/s11071-022-07280-2 SN - 0924-090X SN - 1573-269X VL - 108 IS - 2 SP - 1525 EP - 1545 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Agarwal, Ankit A1 - Guntu, Ravikumar A1 - Banerjee, Abhirup A1 - Gadhawe, Mayuri Ashokrao A1 - Marwan, Norbert T1 - A complex network approach to study the extreme precipitation patterns in a river basin JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes. Y1 - 2022 U6 - https://doi.org/10.1063/5.0072520 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 1 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Ramos, Antonio M. T. A1 - Builes-Jaramillo, Alejandro A1 - Poveda, German A1 - Goswami, Bedartha A1 - Macau, Elbert E. N. A1 - Kurths, Jürgen A1 - Marwan, Norbert T1 - Recurrence measure of conditional dependence and applications JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Herewe propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.95.052206 SN - 2470-0045 SN - 2470-0053 VL - 95 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Ozturk, Ugur A1 - Marwan, Norbert A1 - Korup, Oliver A1 - Saito, H. A1 - Agarwa, Ankit A1 - Grossman, M. J. A1 - Zaiki, M. A1 - Kurths, Jürgen T1 - Complex networks for tracking extreme rainfall during typhoons JF - Chaos : an interdisciplinary journal of nonlinear science N2 - Reconciling the paths of extreme rainfall with those of typhoons remains difficult despite advanced forecasting techniques. We use complex networks defined by a nonlinear synchronization measure termed event synchronization to track extreme rainfall over the Japanese islands. Directed networks objectively record patterns of heavy rain brought by frontal storms and typhoons but mask out contributions of local convective storms. We propose a radial rank method to show that paths of extreme rainfall in the typhoon season (August-November, ASON) follow the overall southwest-northeast motion of typhoons and mean rainfall gradient of Japan. The associated eye-of-the-typhoon tracks deviate notably and may thus distort estimates of heavy typhoon rainfall. We mainly found that the lower spread of rainfall tracks in ASON may enable better hindcasting than for westerly-fed frontal storms in June and July. Y1 - 2018 U6 - https://doi.org/10.1063/1.5004480 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 7 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Agarwal, Ankit A1 - Maheswaran, Rathinasamy A1 - Marwan, Norbert A1 - Caesar, Levke A1 - Kurths, Jürgen T1 - Wavelet-based multiscale similarity measure for complex networks JF - The European physical journal : B, Condensed matter and complex systems N2 - In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson’s correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson’s correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales. KW - Statistical and Nonlinear Physics Y1 - 2018 U6 - https://doi.org/10.1140/epjb/e2018-90460-6 SN - 1434-6028 SN - 1434-6036 VL - 91 IS - 11 PB - Springer CY - New York ER - TY - JOUR A1 - Ekhtiari, Nikoo A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Donner, Reik Volker T1 - Disentangling the multi-scale effects of sea-surface temperatures on global precipitation BT - a coupled networks approach JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The oceans and atmosphere interact via a multiplicity of feedback mechanisms, shaping to a large extent the global climate and its variability. To deepen our knowledge of the global climate system, characterizing and investigating this interdependence is an important task of contemporary research. However, our present understanding of the underlying large-scale processes is greatly limited due to the manifold interactions between essential climatic variables at different temporal scales. To address this problem, we here propose to extend the application of complex network techniques to capture the interdependence between global fields of sea-surface temperature (SST) and precipitation (P) at multiple temporal scales. For this purpose, we combine time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis. Our results demonstrate the potential of the proposed approach to unravel the scale-specific interdependences between atmosphere and ocean and, thus, shed light on the emerging multiscale processes inherent to the climate system, which traditionally remain undiscovered when investigating the system only at the native resolution of existing climate data sets. Moreover, we show how the relevant spatial interdependence structures between SST and P evolve across time-scales. Most notably, the strongest mutual correlations between SST and P at annual scale (8-16 months) concentrate mainly over the Pacific Ocean, while the corresponding spatial patterns progressively disappear when moving toward longer time-scales. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5095565 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Kurths, Jürgen A1 - Agarwal, Ankit A1 - Shukla, Roopam A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Caesar, Levke A1 - Krishnan, Raghavan A1 - Merz, Bruno T1 - Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach JF - Nonlinear processes in geophysics N2 - A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting. Y1 - 2019 U6 - https://doi.org/10.5194/npg-26-251-2019 SN - 1023-5809 SN - 1607-7946 VL - 26 IS - 3 SP - 251 EP - 266 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Maheswaran, Rathinasamy A1 - Agarwal, Ankit A1 - Sivakumar, Bellie A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Wavelet analysis of precipitation extremes over India and teleconnections to climate indices JF - Stochastic Environmental Research and Risk Assessment N2 - Precipitation patterns and extremes are significantly influenced by various climatic factors and large-scale atmospheric circulation patterns. This study uses wavelet coherence analysis to detect significant interannual and interdecadal oscillations in monthly precipitation extremes across India and their teleconnections to three prominent climate indices, namely, Nino 3.4, Pacific Decadal Oscillation, and Indian Ocean Dipole (IOD). Further, partial wavelet coherence analysis is used to estimate the standalone relationship between the climate indices and precipitation after removing the effect of interdependency. The wavelet analysis of monthly precipitation extremes at 30 different locations across India reveals that (a) interannual (2-8 years) and interdecadal (8-32 years) oscillations are statistically significant, and (b) the oscillations vary in both time and space. The results from the partial wavelet coherence analysis reveal that Nino 3.4 and IOD are the significant drivers of Indian precipitation at interannual and interdecadal scales. Intriguingly, the study also confirms that the strength of influence of large-scale atmospheric circulation patterns on Indian precipitation extremes varies with spatial physiography of the region. KW - Extreme precipitation KW - Teleconnection patterns KW - Wavelets KW - Partial wavelet coherence KW - India Y1 - 2019 U6 - https://doi.org/10.1007/s00477-019-01738-3 SN - 1436-3240 SN - 1436-3259 VL - 33 IS - 11-12 SP - 2053 EP - 2069 PB - Springer CY - New York ER - TY - JOUR A1 - Krämer, Hauke Kai A1 - Marwan, Norbert T1 - Border effect corrections for diagonal line based recurrence quantification analysis measures JF - Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics N2 - Recurrence Quantification Analysis (RQA) defines a number of quantifiers, which base upon diagonal line structures in the recurrence plot (RP). Due to the finite size of an RP, these lines can be cut by the borders of the RP and, thus, bias the length distribution of diagonal lines and, consequently, the line based RQA measures. In this letter we investigate the impact of the mentioned border effects and of the thickening of diagonal lines in an RP (caused by tangential motion) on the estimation of the diagonal line length distribution, quantified by its entropy. Although a relation to the Lyapunov spectrum is theoretically expected, the mentioned entropy yields contradictory results in many studies. Here we summarize correction schemes for both, the border effects and the tangential motion and systematically compare them to methods from the literature. We show that these corrections lead to the expected behavior of the diagonal line length entropy, in particular meaning zero values in case of a regular motion and positive values for chaotic motion. Moreover, we test these methods under noisy conditions, in order to supply practical tools for applied statistical research. KW - Recurrence plots KW - Recurrence quantification analysis KW - Shannon entropy KW - Dynamical invariants Y1 - 2019 U6 - https://doi.org/10.1016/j.physleta.2019.125977 SN - 0375-9601 SN - 1873-2429 VL - 383 IS - 34 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lechleitner, Franziska A. A1 - Breitenbach, Sebastian Franz Martin A1 - Rehfeld, Kira A1 - Ridley, Harriet E. A1 - Asmerom, Yemane A1 - Prufer, Keith M. A1 - Marwan, Norbert A1 - Goswami, Bedartha A1 - Kennett, Douglas J. A1 - Aquino, Valorie V. A1 - Polyak, Victor A1 - Haug, Gerald H. A1 - Eglinton, Timothy I. A1 - Baldini, James U. L. T1 - Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw JF - Scientific reports N2 - The presence of a low-to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low-to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low-to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics. Y1 - 2017 U6 - https://doi.org/10.1038/srep45809 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lechleitner, Franziska A. A1 - Baldini, James U. L. A1 - Breitenbach, Sebastian Franz Martin A1 - Fohlmeister, Jens Bernd A1 - McIntyre, Cameron A1 - Goswami, Bedartha A1 - Jamieson, Robert A. A1 - van der Voort, Tessa S. A1 - Prufer, Keith A1 - Marwan, Norbert A1 - Culleton, Brendan J. A1 - Kennett, Douglas J. A1 - Asmerom, Yemane A1 - Polyak, Victor A1 - Eglinton, Timothy I. T1 - Hydrological and climatological controls on radiocarbon concentrations in a tropical stalagmite JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Precisely-dated stalagmites are increasingly important archives for the reconstruction of terrestrial paleoclimate at very high temporal resolution. In-depth understanding of local conditions at the cave site and of the processes driving stalagmite deposition is of paramount importance for interpreting proxy signals incorporated in stalagmite carbonate. Here we present a sub-decadally resolved dead carbon fraction (DCF) record for a stalagmite from Yok Balum Cave (southern Belize). The record is coupled to parallel stable carbon isotope (delta C-13) and U/Ca measurements, as well as radiocarbon (C-14) measurements from soils overlying the cave system. Using a karst carbon cycle model we disentangle the importance of soil and karst processes on stalagmite DCF incorporation, revealing a dominant host rock dissolution control on total DCF. Covariation between DCF, delta C-13, and U/Ca indicates that karst processes are a common driver of all three parameters, suggesting possible use of delta C-13 and trace element ratios to independently quantify DCF variability. A statistically significant multi-decadal lag of variable length exists between DCF and reconstructed solar activity, suggesting that solar activity influenced regional precipitation in Mesoamerica over the past 1500 years, but that the relationship was non-static. Although the precise nature of the observed lag is unclear, solar-induced changes in North Atlantic oceanic and atmospheric dynamics may play a role. (C) 2016 Elsevier Ltd. All rights reserved. KW - Stalagmite KW - Tropics KW - Radiocarbon KW - Trace elements KW - Hydroclimate Y1 - 2016 U6 - https://doi.org/10.1016/j.gca.2016.08.039 SN - 0016-7037 SN - 1872-9533 VL - 194 SP - 233 EP - 252 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schmah, Tanya A1 - Marwan, Norbert A1 - Thomsen, Jesper Skovhus A1 - Saparin, Peter T1 - Long range node-strut analysis of trabecular bone microarchitecture JF - Medical physics : the international journal of medical physics research and practice N2 - Purpose: We present a new morphometric measure of trabecular bone microarchitecture, called mean node strength (NdStr), which is part of a newly developed approach called long range nodestrut analysis. Our general aim is to describe and quantify the apparent "latticelike" microarchitecture of the trabecular bone network. Methods: Similar in some ways to the topological node-strut analysis introduced by Garrahan et al. [J. Microsc. 142, 341-349 (1986)], our method is distinguished by an emphasis on long-range trabecular connectivity. Thus, while the topological classification of a pixel (after skeletonization) as a node, strut, or terminus, can be determined from the 3 x 3 neighborhood of that pixel, our method, which does not involve skeletonization, takes into account a much larger neighborhood. In addition, rather than giving a discrete classification of each pixel as a node, strut, or terminus, our method produces a continuous variable, node strength. The node strength is averaged over a region of interest to produce the mean node strength of the region. Results: We have applied our long range node-strut analysis to a set of 26 high-resolution peripheral quantitative computed tomography (pQCT) axial images of human proximal tibiae acquired 17 mm below the tibial plateau. We found that NdStr has a strong positive correlation with trabecular volumetric bone mineral density (BMD). After an exponential transformation, we obtain a Pearson's correlation coefficient of r - 0.97. Qualitative comparison of images with similar BMD but with very different NdStr values suggests that the latter measure has successfully quantified the prevalence of the "latticelike" microarchitecture apparent in the image. Moreover, we found a strong correlation (r - 0.62) between NdStr and the conventional node-terminus ratio (Nd/Tm) of Garrahan et al. The Nd/Tm ratios were computed using traditional histomorphometry performed on bone biopsies obtained at the same location as the pQCT scans. Conclusions: The newly introduced morphometric measure allows a quantitative assessment of the long-range connectivity of trabecular bone. One advantage of this method is that it is based on pQCT images that can be obtained noninvasively from patients, i.e., without having to obtain a bone biopsy from the patient. KW - trabecular bone KW - osteoporosis KW - structure analysis KW - histomorphometry KW - pQCT Y1 - 2011 U6 - https://doi.org/10.1118/1.3622600 SN - 0094-2405 VL - 38 IS - 9 SP - 5003 EP - 5011 PB - American Association of Physicists in Medicine CY - Melville ER - TY - JOUR A1 - Donges, Jonathan Friedemann A1 - Donner, Reik Volker A1 - Trauth, Martin H. A1 - Marwan, Norbert A1 - Schellnhuber, Hans Joachim A1 - Kurths, Jürgen T1 - Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Potential paleoclimatic driving mechanisms acting on human evolution present an open problem of cross-disciplinary scientific interest. The analysis of paleoclimate archives encoding the environmental variability in East Africa during the past 5 Ma has triggered an ongoing debate about possible candidate processes and evolutionary mechanisms. In this work, we apply a nonlinear statistical technique, recurrence network analysis, to three distinct marine records of terrigenous dust flux. Our method enables us to identify three epochs with transitions between qualitatively different types of environmental variability in North and East Africa during the (i) Middle Pliocene (3.35-3.15 Ma B. P.), (ii) Early Pleistocene (2.25-1.6 Ma B. P.), and (iii) Middle Pleistocene (1.1-0.7 Ma B. P.). A deeper examination of these transition periods reveals potential climatic drivers, including (i) large-scale changes in ocean currents due to a spatial shift of the Indonesian throughflow in combination with an intensification of Northern Hemisphere glaciation, (ii) a global reorganization of the atmospheric Walker circulation induced in the tropical Pacific and Indian Ocean, and (iii) shifts in the dominating temporal variability pattern of glacial activity during the Middle Pleistocene, respectively. A reexamination of the available fossil record demonstrates statistically significant coincidences between the detected transition periods and major steps in hominin evolution. This result suggests that the observed shifts between more regular and more erratic environmental variability may have acted as a trigger for rapid change in the development of humankind in Africa. KW - African climate KW - Plio-Pleistocene KW - climate-driven evolution KW - dynamical transitions KW - nonlinear time series analysis Y1 - 2011 U6 - https://doi.org/10.1073/pnas.1117052108 SN - 0027-8424 VL - 108 IS - 51 SP - 20422 EP - 20427 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Malik, Nishant A1 - Zou, Y. A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Dynamical regimes and transitions in plio-pleistocene Asian monsoon JF - epl : a letters journal exploring the frontiers of physics N2 - We propose a novel approach based on the fluctuation of similarity to identify regimes of distinct dynamical complexity in short time series. A statistical test is developed to estimate the significance of the identified transitions. Our method is verified by uncovering bifurcation structures in several paradigmatic models, providing more complex transitions compared with traditional Lyapunov exponents. In a real-world situation, we apply this method to identify millennial-scale dynamical transitions in Plio-Pleistocene proxy records of the South Asian summer monsoon system. We infer that many of these transitions are induced by the external forcing of the solar insolation and are also affected by internal forcing on Monsoonal dynamics, i.e., the glaciation cycles of the Northern Hemisphere and the onset of the Walker circulation. Y1 - 2012 U6 - https://doi.org/10.1209/0295-5075/97/40009 SN - 0295-5075 VL - 97 IS - 4 PB - EDP Sciences CY - Mulhouse ER - TY - JOUR A1 - Marwan, Norbert A1 - Beller, Gise A1 - Felsenberg, Dieter A1 - Saparin, Peter A1 - Kurths, Jürgen T1 - quantifying changes in the spatial structure of trabecular bone JF - International journal of bifurcation and chaos : in applied sciences and engineering N2 - We apply recently introduced measures of complexity for the structural quantification of distal tibial bone. For the first time, we are able to investigate the temporal structural alteration of trabecular bone. Based on four patients, we show how the bone may alter due to temporal immobilization. KW - 3D medical image analysis KW - pQCT KW - trabecular bone KW - patient immobilization Y1 - 2012 U6 - https://doi.org/10.1142/S0218127412500277 SN - 0218-1274 VL - 22 IS - 2 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Malik, Nishant A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - We present a detailed analysis of summer monsoon rainfall over the Indian peninsular using nonlinear spatial correlations. This analysis is carried out employing the tools of complex networks and a measure of nonlinear correlation for point processes such as rainfall, called event synchronization. This study provides valuable insights into the spatial organization, scales, and structure of the 90th and 94th percentile rainfall events during the Indian summer monsoon (June-September). We furthermore analyse the influence of different critical synoptic atmospheric systems and the impact of the steep Himalayan topography on rainfall patterns. The presented method not only helps us in visualising the structure of the extreme-event rainfall fields, but also identifies the water vapor pathways and decadal-scale moisture sinks over the region. Furthermore a simple scheme based on complex networks is presented to decipher the spatial intricacies and temporal evolution of monsoonal rainfall patterns over the last 6 decades. KW - Indian summer monsoon KW - Event synchronization KW - Complex networks KW - Rainfall patterns Y1 - 2012 U6 - https://doi.org/10.1007/s00382-011-1156-4 SN - 0930-7575 VL - 39 IS - 3-4 SP - 971 EP - 987 PB - Springer CY - New York ER - TY - JOUR A1 - Marwan, Norbert A1 - Schinkel, Stefan A1 - Kurths, Jürgen T1 - Recurrence plots 25 years later -Gaining confidence in dynamical transitions JF - epl : a letters journal exploring the frontiers of physics N2 - Recurrence-plot-based time series analysis is widely used to study changes and transitions in the dynamics of a system or temporal deviations from its overall dynamical regime. However, most studies do not discuss the significance of the detected variations in the recurrence quantification measures. In this letter we propose a novel method to add a confidence measure to the recurrence quantification analysis. We show how this approach can be used to study significant changes in dynamical systems due to a change in control parameters, chaos-order as well as chaos-chaos transitions. Finally we study and discuss climate transitions by analysing a marine proxy record for past sea surface temperature. This paper is dedicated to the 25th anniversary of the introduction of recurrence plots. Y1 - 2013 U6 - https://doi.org/10.1209/0295-5075/101/20007 SN - 0295-5075 VL - 101 IS - 2 PB - EDP Sciences CY - Mulhouse ER - TY - JOUR A1 - Goswami, Bedartha A1 - Marwan, Norbert A1 - Feulner, Georg A1 - Kurths, Jürgen T1 - How do global temperature drivers influence each other? JF - European physical journal special topics N2 - We investigate a network of influences connected to global mean temperature. Considering various climatic factors known to influence global mean temperature, we evaluate not only the impacts of these factors on temperature but also the directed dependencies among the factors themselves. Based on an existing recurrence-based connectivity measure, we propose a new and more general measure that quantifies the level of dependence between two time series based on joint recurrences at a chosen time delay. The measures estimated in the analysis are tested for statistical significance using twin surrogates. We find, in accordance with earlier studies, the major drivers for global mean temperature to be greenhouse gases, ENSO, volcanic activity, and solar irradiance. We further uncover a feedback between temperature and ENSO. Our results demonstrate the need to involve multiple, delayed interactions within the drivers of temperature in order to develop a more thorough picture of global temperature variations. Y1 - 2013 U6 - https://doi.org/10.1140/epjst/e2013-01889-8 SN - 1951-6355 VL - 222 IS - 3-4 SP - 861 EP - 873 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Donges, Jonathan Friedemann A1 - Zou, Yong A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Complex networks in climate dynamics : comparing linear and nonlinear network construction methods N2 - Complex network theory provides a powerful framework to statistically investigate the topology of local and non- local statistical interrelationships, i.e. teleconnections, in the climate system. Climate networks constructed from the same global climatological data set using the linear Pearson correlation coefficient or the nonlinear mutual information as a measure of dynamical similarity between regions, are compared systematically on local, mesoscopic and global topological scales. A high degree of similarity is observed on the local and mesoscopic topological scales for surface air temperature fields taken from AOGCM and reanalysis data sets. We find larger differences on the global scale, particularly in the betweenness centrality field. The global scale view on climate networks obtained using mutual information offers promising new perspectives for detecting network structures based on nonlinear physical processes in the climate system. Y1 - 2009 UR - http://www.springerlink.com/content/1951-6355 U6 - https://doi.org/10.1140/epjst/e2009-01098-2 SN - 1951-6355 ER - TY - JOUR A1 - Marwan, Norbert A1 - Trauth, Martin H. A1 - Schwarz, Udo A1 - Kurths, Jürgen A1 - Strecker, Manfred T1 - Climate dynamics of varved pleistocene lake sediments in nw Argentina Y1 - 1999 SN - 1029-7006 ER - TY - JOUR A1 - Marwan, Norbert A1 - Schwarz, Udo A1 - Kurths, Jürgen A1 - Strecker, Manfred T1 - ENSO Impact on landslide generation in northwestern Argentina N2 - Climatic changes are of major importance in landslide generation in the Argentine Andes. Increased humidity as a potential influential factor was inferred from the temporal clustering of landslide deposits during a period of significantly wetter climate, 30,000 years ago. A change in seasonality was tested by comparing past (inferred from annual-layered lake deposits, 30,000 years old) and modern (present-day observations) precipitation changes. Quantitative analysis of cross recurrence plots were developed to compare the influence of the El Nino/Southern Oscillation (ENSO) on present and past rainfall variations. This analysis has shown the stronger influence of NE trades in the location of landslide deposits in the intra-andean basin and valleys, what caused a higher contrast between summer and winter rainfall and an increasing of precipitation in La Nina years. This is believed to reduce thresholds for landslide generation in the arid to semiarid intra-andean basins and valleys. Y1 - 2000 SN - 1029-7006 ER - TY - JOUR A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Nonlinear analysis of bivariate data with cross recurrence plots N2 - We use the extension of the method of recurrence plots to cross recurrence plots (CRP) which enables a nonlinear analysis of bivariate data. To quantify CRPs, we develop further three measures of complexity mainly basing on diagonal structures in CRPs. The CRP analysis of prototypical model systems with nonlinear interactions demonstrates that this technique enables to find these nonlinear interrelations from bivariate time series, whereas linear correlation tests do not. Applying the CRP analysis to climatological data, we find a complex relationship between rainfall and El Nino data. Y1 - 2001 UR - http://arxiv.org/abs/physics/0201061 ER - TY - JOUR A1 - Marwan, Norbert A1 - Nowaczyk, Norbert R. A1 - Kurths, Jürgen A1 - Thiel, Marco T1 - Cross recurrence plot based rescaling of geological time series N2 - The rescaling of geological data series to a geological reference time series is of major interest in many investigations. For example, geophysical borehole data should be correlated to a given data series whose time scale is known in order to achieve an age-depth function or the sedimentation rate for the borehole data. Usually this synchronization is performed visually and by hand. Instead of using this wiggle matching by eye, we present the application of cross recurrence plots for such tasks. Using this method, the synchronization and rescaling of geological data to a given time scale is much easier and faster than by hand. Y1 - 2001 SN - 1029-7006 ER - TY - JOUR A1 - Wessel, Niels A1 - Marwan, Norbert A1 - Meyerfeldt, Udo A1 - Schirdewan, Alexander A1 - Kurths, Jürgen T1 - Recurrence quantification analysis to characterise the heart rate variability before the onset of ventricular tachycardia N2 - Ventricular tachycardia or fibrillation (VT) as fatal cardiac arrhythmias are the main factors triggering sudden cardiac death. The objective of this recurrence quantification analysis approach is to find early signs of sustained VT in patients with an implanted cardioverter-defibrillator (ICD). These devices are able to safeguard patients by returning their hearts to a normal rhythm via strong defibrillatory shocks; additionally, they are able to store at least 1000 beat-to-beat intervals immediately before the onset of a life-threatening arrhythmia. We study the Y1 - 2001 UR - http://link.springer.de/link/service/series/0558/bibs/2199/21990295.htm ER - TY - JOUR A1 - Marwan, Norbert A1 - Thiel, Marco A1 - Nowaczyk, Norbert R. T1 - Cross recurrence plot based synchronization of time series N2 - The method of recurrence plots is extended to the cross recurrence plots (CRP), which among others enables the study of synchronization or time differences in two time series. This is emphasized in a distorted main diagonal in the cross recurrence plot, the line of synchronization (LOS). A non-parametrical fit of this LOS can be used to rescale the time axis of the two data series (whereby one of it is e.g. compressed or stretched) so that they are synchronized. An application of this method to geophysical sediment core data illustrates its suitability for real data. The rock magnetic data of two different sediment cores from the Makarov Basin can be adjusted to each other by using this method, so that they are comparable. Y1 - 2002 UR - http://arxiv.org/abs/physics/0201062 ER - TY - JOUR A1 - Marwan, Norbert A1 - Wessel, Niels A1 - Meyerfeldt, Udo A1 - Schirdewan, Alexander A1 - Kurths, Jürgen T1 - Recurrence-plot-based measures of complexity and its application to heart-rate-variability data N2 - The knowledge of transitions between regular, laminar or chaotic behavior is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods which however require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart rate variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e. chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our new measures to the heart rate variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias. Y1 - 2002 UR - http://arxiv.org/abs/physics/0201064 ER - TY - JOUR A1 - Trauth, Martin H. A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Strecker, Manfred T1 - Multiple landslide clusters record quaternary climate changes in the northwestern Argentine andes N2 - The chronology of multiple landslide deposits and related lake sediments in the semi-arid eastern Argentine Cordillera suggests that major mass movements cluster in two time periods during the Quaternary, i.e. between 40 and 25 and after 5 14C kyr BP. These clusters may correspond to the Minchin (maximum at around 28-27 14C kyr BP) and Titicaca wet periods (after 3.9 14C kyr BP). The more humid conditions apparently caused enhanced landsliding in this environment. In contrast, no landslide-related damming and associated lake sediments occurred during the Coipasa (11.5- 10 14C yr BP) and Tauca wet periods (14.5-11 14C yr BP). The two clusters at 40-25 and after 5 14C kyr BP may correspond to periods where the El Niño-Southern Oscillation (ENSO) and Tropical Atlantic Sea Surface Temperature Variability (TAV) were active. This, however, was not the case during the Coipasa and Tauca wet periods. Lake-balance modelling of a landslide-dammed lake suggests a 10-15% increase in precipitation and a 3-4 ° C decrease in temperature at ~30 14C kyr BP as compared to the present. In addition, time-series analysis reveals a strong ENSO and TAV during that time. The landslide clusters in northwestern Argentina are therefore best explained by periods of more humid and more variable climates. Y1 - 2003 UR - http://dx.doi.org/10.1016/S0031-0182(03)00273-6 ER - TY - JOUR A1 - Marwan, Norbert A1 - Trauth, Martin H. A1 - Vuille, Mathias A1 - Kurths, Jürgen T1 - Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods N2 - Higher variability in rainfall and river discharge could be of major importance in landslide generation in the north-western Argentine Andes. Annual layered (varved) deposits of a landslide dammed lake in the Santa Maria Basin (26°S, 66°W) with an age of 30,000 14C years provide an archive of precipitation variability during this time. The comparison of these data with present-day rainfall observations tests the hypothesis that increased rainfall variability played a major role in landslide generation. A potential cause of such variability is the El Niño/ Southern Oscillation (ENSO). The causal link between ENSO and local rainfall is quantified by using a new method of nonlinear data analysis, the quantitative analysis of cross recurrence plots (CRP). This method seeks similarities in the dynamics of two different processes, such as an ocean-atmosphere oscillation and local rainfall. Our analysis reveals significant similarities in the statistics of both modern and palaeo-precipitation data. The similarities in the data suggest that an ENSO-like influence on local rainfall was present at around 30,000 14C years ago. Increased rainfall, which was inferred from a lake balance modeling in a previous study, together with ENSO-like cyclicities could help to explain the clustering of landslides at around 30,000 14C years ago. Y1 - 2003 UR - http://arxiv.org/abs/nlin.CD/0303056 ER - TY - JOUR A1 - Zbilut, J. P. A1 - Mitchell, J. C. A1 - Giuliani, A. A1 - Colosimo, A. A1 - Marwan, Norbert A1 - Webber, C. L. T1 - Singular hydrophobicity patterns and net charge : a mesoscopic principle for protein aggregation/folding N2 - A statistical model describing the propensity for protein aggregation is presented. Only amino-acid hydrophobicity values and calculated net charge are used for the model. The combined effects of hydrophobic patterns as computed by the signal analysis technique, recurrence quantification, plus calculated net charge were included in a function emphasizing the effect of singular hydrophobic patches which were found to be statistically significant for predicting aggregation propensity as quantified by fluorescence studies obtained from the literature. These results suggest preliminary evidence for a mesoscopic principle for protein folding/aggregation. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 SN - 0378-4371 ER - TY - JOUR A1 - Marwan, Norbert A1 - Meinke, Anja T1 - Extended recurrence plot analysis and its application to ERP data N2 - We present new measures of complexity and their application to event-related potential data. The new measures are based on structures of recurrence plots and makes the identification of chaos-chaos transitions possible. The application of these measures to data from single-trials of the Oddball experiment can identify laminar states therein. This offers a new way of analyzing event-related activity on a single-trial basis Y1 - 2004 SN - 0218-1274 ER - TY - JOUR A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Line structures in recurrence plots N2 - Recurrence plots exhibit line structures which represent typical behaviour of the investigated system. The local slope of these line structures is connected with a specific transformation of the time scales of different segments of the phase-space trajectory. This provides us a better understanding of the structures occurring in recurrence plots. The relationship between the time-scales and line structures are of practical importance in cross recurrence plots. Using this relationship within cross recurrence plots, the time-scales of differently sampled or time- transformed measurements can be adjusted. An application to geophysical measurements illustrates the capability of this method for the adjustment of time-scales in different measurements. (C) 2005 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0375-9601 ER - TY - THES A1 - Marwan, Norbert T1 - Encounters with neighbours BT - current developments of concepts based on recurrence plots and their applications N2 - Diese Arbeit beschäftigt sich mit verschiedenen Aspekten und Anwendungen von Recurrence Plots. Nach einer Übersicht über Methoden, die auf Recurrence Plots basieren, werden neue Komplexitätsmaße eingeführt, die geometrische Strukturen in den Recurrence Plots beschreiben. Diese neuen Maße erlauben die Identifikation von Chaos-Chaos-Übergängen in dynamischen Prozessen. In einem weiteren Schritt werden Cross Recurrence Plots eingeführt, mit denen zwei verschiedene Prozesse untersucht werden. Diese bivariate Analyse ermöglicht die Bewertung von Unterschieden zwischen zwei Prozessen oder das Anpassen der Zeitskalen von zwei Zeitreihen. Diese Technik kann auch genutzt werden, um ähnliche Abschnitte in zwei verschiedenen Datenreihen zu finden. Im Anschluß werden diese neuen Entwicklungen auf Daten verschiedener Art angewendet. Methoden, die auf Recurrence Plots basieren, können an die speziellen Probleme angepaßt werden, so daß viele weitere Anwendungen möglich sind. Durch die Anwendung der neu eingeführten Komplexitätsmaße können Chaos-Chaos-Übergänge in Herzschlagdaten vor dem Auftreten einer lebensbedrohlichen Herzrhythmusstörung festgestellt werden, was für die Entwicklung neuer Therapien dieser Herzrhythmusstörungen von Bedeutung sein könnte. In einem weiteren Beispiel, in dem EEG-Daten aus einem kognitiv orientierten Experiment untersucht werden, ermöglichen diese Komplexitätsmaße das Erkennen von spezifischen Reaktionen im Gehirn bereits in Einzeltests. Normalerweise können diese Reaktionen erst durch die Auswertung von vielen Einzeltests erkannt werden. Mit der Hilfe von Cross Recurrence Plots wird die Existenz einer klimatischen Zirkulation, die der heutigen El Niño/ Southern Oscillation sehr ähnlich ist, im Nordwesten Argentiniens vor etwa 34000 Jahren nachgewiesen. Außerdem können mit Cross Recurrence Plots die Zeitskalen verschiedener Bohrlochdaten aufeinander abgeglichen werden. Diese Methode kann auch dazu genutzt werden, ein geologisches Profil mit Hilfe eines Referenzprofiles mit bekannter Zeitskala zu datieren. Weitere Beispiele aus den Gebieten der Molekularbiologie und der Spracherkennung unterstreichen das Potential dieser Methode. N2 - In this work, different aspects and applications of the recurrence plot analysis are presented. First, a comprehensive overview of recurrence plots and their quantification possibilities is given. New measures of complexity are defined by using geometrical structures of recurrence plots. These measures are capable to find chaos-chaos transitions in processes. Furthermore, a bivariate extension to cross recurrence plots is studied. Cross recurrence plots exhibit characteristic structures which can be used for the study of differences between two processes or for the alignment and search for matching sequences of two data series. The selected applications of the introduced techniques to various kind of data demonstrate their ability. Analysis of recurrence plots can be adopted to the specific problem and thus opens a wide field of potential applications. Regarding the quantification of recurrence plots, chaos-chaos transitions can be found in heart rate variability data before the onset of life threatening cardiac arrhythmias. This may be of importance for the therapy of such cardiac arrhythmias. The quantification of recurrence plots allows to study transitions in brain during cognitive experiments on the base of single trials. Traditionally, for the finding of these transitions the averaging of a collection of single trials is needed. Using cross recurrence plots, the existence of an El Niño/Southern Oscillation-like oscillation is traced in northwestern Argentina 34,000 yrs. ago. In further applications to geological data, cross recurrence plots are used for time scale alignment of different borehole data and for dating a geological profile with a reference data set. Additional examples from molecular biology and speech recognition emphasize the suitability of cross recurrence plots. KW - Recurrence-Plot KW - Cross-Recurrence-Plot KW - Wiederkehrdarstellung KW - Rekurrenzdarstellung KW - Rekurrenzanalyse KW - recurrence plot KW - cross recurrence plot KW - recurrence quantification analysis Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000856 ER -