TY - JOUR A1 - Heinrichs, Steffi A1 - Ammer, Christian A1 - Mund, Martina A1 - Boch, Steffen A1 - Budde, Sabine A1 - Fischer, Markus A1 - Mueller, Joerg A1 - Schoening, Ingo A1 - Schulze, Ernst-Detlef A1 - Schmidt, Wolfgang A1 - Weckesser, Martin A1 - Schall, Peter T1 - Landscape-Scale Mixtures of Tree Species are More Effective than Stand-Scale Mixtures for Biodiversity of Vascular Plants, Bryophytes and Lichens JF - Forests N2 - Tree species diversity can positively affect the multifunctionality of forests. This is why conifer monocultures of Scots pine and Norway spruce, widely promoted in Central Europe since the 18th and 19th century, are currently converted into mixed stands with naturally dominant European beech. Biodiversity is expected to benefit from these mixtures compared to pure conifer stands due to increased abiotic and biotic resource heterogeneity. Evidence for this assumption is, however, largely lacking. Here, we investigated the diversity of vascular plants, bryophytes and lichens at the plot (alpha diversity) and at the landscape (gamma diversity) level in pure and mixed stands of European beech and conifer species (Scots pine, Norway spruce, Douglas fir) in four regions in Germany. We aimed to identify compositions of pure and mixed stands in a hypothetical forest landscape that can optimize gamma diversity of vascular plants, bryophytes and lichens within regions. Results show that gamma diversity of the investigated groups is highest when a landscape comprises different pure stands rather than tree species mixtures at the stand scale. Species mainly associated with conifers rely on light regimes that are only provided in pure conifer forests, whereas mixtures of beech and conifers are more similar to beech stands. Combining pure beech and pure conifer stands at the landscape scale can increase landscape level biodiversity and conserve species assemblages of both stand types, while landscapes solely composed of stand scale tree species mixtures could lead to a biodiversity reduction of a combination of investigated groups of 7 up to 20%. KW - Fagus sylvatica KW - Pinus sylvestris KW - Picea abies KW - Pseudotsuga menziesii KW - forest management KW - tree species diversity KW - forest conversion KW - gamma diversity KW - landscape scale KW - Biodiversity Exploratories Y1 - 2019 U6 - https://doi.org/10.3390/f10010073 SN - 1999-4907 VL - 10 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Allan, Eric A1 - Bossdorf, Oliver A1 - Dormann, Carsten F. A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Tscharntke, Teja A1 - Blüthgen, Nico A1 - Bellach, Michaela A1 - Birkhofer, Klaus A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Chatzinotas, Antonis A1 - Christ, Sabina A1 - Daniel, Rolf A1 - Diekötter, Tim A1 - Fischer, Christiane A1 - Friedl, Thomas A1 - Glaser, Karin A1 - Hallmann, Christine A1 - Hodac, Ladislav A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klein, Alexandra Maria A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Müller, Jörg A1 - Nacke, Heiko A1 - Pasalic, Esther A1 - Rillig, Matthias C. A1 - Rothenwoehrer, Christoph A1 - Schally, Peter A1 - Scherber, Christoph A1 - Schulze, Waltraud X. A1 - Socher, Stephanie A. A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Türke, Manfred A1 - Weiner, Christiane N. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Gockel, Sonja A1 - Gorke, Martin A1 - Hemp, Andreas A1 - Renner, Swen C. A1 - Schöning, Ingo A1 - Pfeiffer, Simone A1 - König-Ries, Birgitta A1 - Buscot, Francois A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Interannual variation in land-use intensity enhances grassland multidiversity JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. KW - biodiversity loss KW - agricultural grasslands KW - Biodiversity Exploratories Y1 - 2014 U6 - https://doi.org/10.1073/pnas.1312213111 SN - 0027-8424 VL - 111 IS - 1 SP - 308 EP - 313 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Boch, Steffen A1 - Prati, Daniel A1 - Müller, Jörg A1 - Socher, Stephanie A1 - Baumbach, Henryk A1 - Buscot, Francois A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Hessenmöller, Dominik A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, K. Eduard A1 - Pfeiffer, Simone A1 - Pommer, Ulf A1 - Schöning, Ingo A1 - Schulze, Ernst-Detlef A1 - Seilwinder, Claudia A1 - Weisser, Wolfgang W. A1 - Wells, Konstans A1 - Fischer, Markus T1 - High plant species richness indicates management-related disturbances rather than the conservation status of forests JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m x 20 m forest plots in three regions of Germany (Schwabische Alb, Hainich-Dun, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwabische Alb and Hainich-Dun, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dun. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances. KW - Biodiversity Exploratories KW - Coniferous plantations KW - Disturbance KW - Ellenberg indicator values KW - Forest management KW - Selection vs. age-class forests KW - Silviculture KW - Standing biomass KW - Typical forest species KW - Unmanaged vs. managed forests Y1 - 2013 U6 - https://doi.org/10.1016/j.baae.2013.06.001 SN - 1439-1791 VL - 14 IS - 6 SP - 496 EP - 505 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Lange, Markus A1 - Türke, Manfred A1 - Pasalic, Esther A1 - Boch, Steffen A1 - Hessenmöller, Dominik A1 - Müller, Jörg A1 - Prati, Daniel A1 - Socher, Stephanie A. A1 - Fischer, Markus A1 - Weisser, Wolfgang W. A1 - Gossner, Martin M. T1 - Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure JF - Forest ecology and management N2 - Forest management is known to influence species diversity of various taxa but inconsistent or even contrasting effects are reported for arthropods. Regional differences in management as well as differences in regional species pools might be responsible for these inconsistencies, but, inter-regional replicated studies that account for regional variability are rare. We investigated the effect of forest type on the abundance, diversity, community structure and composition of two important ground-dwelling beetle families, Carabidae and Staphylinidae, in 149 forest stands distributed over three regions in Germany. In particular we focused on recent forestry history, stand age and dominant tree species, in addition to a number of environmental descriptors. Overall management effects on beetle communities were small and mainly mediated by structural habitat parameters such as the cover of forest canopy or the plant diversity on forest stands. The general response of both beetle taxa to forest management was similar in all regions: abundance and species richness of beetles was higher in older than in younger stands and species richness was lower in unmanaged than in managed stands. The abundance ratio of forest species-to-open habitat species differed between regions, but generally increased from young to old stands, from coniferous to deciduous stands and from managed to unmanaged stands. The response of both beetle families to dominant tree species was variable among regions and staphylinid richness varied in the response to recent forestry history. Our results suggest that current forest management practices change the composition of ground-dwelling beetle communities mainly by favoring generalists and open habitat species. To protect important forest beetle communities and thus the ecosystem functions and services provided by them, we suggest to shelter remaining ancient forests and to develop near-to-nature management strategies by prolonging rotation periods and increasing structural diversity of managed forests. Possible geographic variations in the response of beetle communities need to be considered in conservation-orientated forest management strategies. (C) 2014 Elsevier B.V. All rights reserved. KW - Beech forest KW - Biodiversity Exploratories KW - Conifer plantations KW - Habitat preferences KW - Insects KW - Land use Y1 - 2014 U6 - https://doi.org/10.1016/j.foreco.2014.06.012 SN - 0378-1127 SN - 1872-7042 VL - 329 SP - 166 EP - 176 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pfestorf, H. A1 - Weiss, L. A1 - Müller, J. A1 - Boch, Steffen A1 - Socher, S. A. A1 - Prati, Daniel A1 - Schöning, Ingo A1 - Weisser, W. A1 - Fischer, M. A1 - Jeltsch, Florian T1 - Community mean traits as additional indicators to monitor effects of land-use intensity On grassland plant diversity JF - Perspectives in plant ecology, evolution and systematics N2 - Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German 'Biodiversity Exploratory' research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics. KW - Biodiversity Exploratories KW - Biological conservation KW - (Semi-natural) Grasslands KW - Plant functional traits KW - Indicators KW - Land-use intensity Y1 - 2013 U6 - https://doi.org/10.1016/j.ppees.2012.10.003 SN - 1433-8319 VL - 15 IS - 1 SP - 1 EP - 11 PB - Elsevier CY - Jena ER -