TY - JOUR A1 - Matic, Aleksandar A1 - Schlaad, Helmut T1 - Thiol-ene photofunctionalization of 1,4-polymyrcene JF - Polymer international N2 - 1,4-Polymyrcene was synthesized by anionic polymerization of -myrcene and was subjected to photochemical functionalization with various thiols (i.e. methyl thioglycolate, methyl 3-mercaptopropionate, butyl 3-mercaptopropionate, ethyl 2-mercaptopropionate and 2-methyl-2-propanethiol) using benzophenone/UV light as the radical source. The yield of thiol addition to the trisubstituted double bonds of 1,4-polymyrcene decreased in the order 1 degrees thiol (ca 95%) > 2 degrees thiol (ca 80%) > 3 degrees thiol (<5%), due to the reversibility of the thiol-ene reaction. Remarkably, thiol addition to the side-chain double bonds was 8 - 10 times (1 degrees thiol) or 24 times (2 degrees thiol) faster than to the main-chain double bonds, which can be explained by the different accessibility of the double bonds and steric hindrance. Despite the use of a 10-fold excess of thiol with respect to myrcene units, the thiol-ene addition was accompanied by chain coupling reactions, which in the extreme case of 3 degrees thiol (or in the absence of thiol) resulted in the formation of insoluble crosslinked material. As an example, a methyl-thioglycolate-functionalized 1,4-polymyrcene was saponified/crosslinked to give submicron polyelectrolyte particles in dilute alkaline solution. (c) 2018 Society of Chemical Industry KW - polymyrcene KW - thiol-ene KW - photochemistry KW - regioselectivity Y1 - 2018 U6 - https://doi.org/10.1002/pi.5534 SN - 0959-8103 SN - 1097-0126 VL - 67 IS - 5 SP - 500 EP - 505 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Fudickar, Werner A1 - Vomdran, Katja A1 - Linker, Torsten T1 - Auxiliary controlled singlet-oxygen ene reactions of cyclohexenes JF - Tetrahedron N2 - The photooxygenation of homochiral cyclohexene ketals, which are easily available from 2-cyclohexenone and L-tartrates, affords hydroperoxides and after reduction the corresponding allylic alcohols in good yields and high regioselectivities. This can be rationalized by electronic repulsions in a perepoxide intermediate and provides evidence for unfavorable 1,3 diaxial interactions with a dioxolane oxygen atom. Only low stereoselectivities were observed, due to the flexibility of the cyclohexene ring. However, the diastereomers could be separated and after cleavage of the auxiliary, 4-hydroxy-2-cyclohexen-1-one was isolated in enantiomerically pure form, which can serve as a building block for natural product synthesis. KW - singlet oxygen KW - auxiliary control KW - regioselectivity KW - stereoselectivity Y1 - 2006 U6 - https://doi.org/10.1016/j.tet.2006.07.104 SN - 0040-4020 VL - 62 IS - 46 SP - 10639 EP - 10646 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Bauch, Marcel A1 - Böttcher, Dominique A1 - Bornscheuer, Uwe T. A1 - Linker, Torsten T1 - Enzymatic Cleavage of Aryl Acetates JF - ChemCatChem : heterogeneous & homogeneous & bio- & nano-catalysis ; a journal of ChemPubSoc Europe N2 - Seven enzymes have been screened for the cleavage of aryl acetates. Phenyl and naphthyl acetates react with lipases and esterases, whereas the sterically demanding anthracene acetate gave a conversion only with porcine liver esterase and esterase 2 from Bacillus subtilis (BS2). These two enzymes have been employed on a preparative (0.5 mmol) scale and afforded cleavage products in 91 and 94% yields, even for anthracene acetate. Thus, this method is superior to chemical cleavage with catalytic amounts of sodium methoxide (Zemplen conditions), which gave only low conversions. Finally, regioselectivity has been achieved with an anthracene bisacetate, in which an ethyl group controls the cleavage of the first acetate. This indicates that steric interactions play a crucial role in the enzymatic cleavage of aryl acetates, which might be interesting for future applications or the development of enzyme inhibitors. KW - arenes KW - enzyme catalysis KW - regioselectivity KW - steric hindrance KW - substituent effects Y1 - 2016 U6 - https://doi.org/10.1002/cctc.201600678 SN - 1867-3880 SN - 1867-3899 VL - 8 SP - 2853 EP - 2857 PB - Wiley-VCH CY - Weinheim ER -