TY - THES A1 - Eckert, Silvia T1 - Trait variation in changing environments: Assessing the role of DNA methylation in non-native plant species T1 - Merkmalsvariation in sich verändernden Umgebungen: Bewertung der Rolle der DNA-Methylierung bei nicht einheimischen Pflanzenarten N2 - The increasing introduction of non-native plant species may pose a threat to local biodiversity. However, the basis of successful plant invasion is not conclusively understood, especially since these plant species can adapt to the new range within a short period of time despite impoverished genetic diversity of the starting populations. In this context, DNA methylation is considered promising to explain successful adaptation mechanisms in the new habitat. DNA methylation is a heritable variation in gene expression without changing the underlying genetic information. Thus, DNA methylation is considered a so-called epigenetic mechanism, but has been studied in mainly clonally reproducing plant species or genetic model plants. An understanding of this epigenetic mechanism in the context of non-native, predominantly sexually reproducing plant species might help to expand knowledge in biodiversity research on the interaction between plants and their habitats and, based on this, may enable more precise measures in conservation biology. For my studies, I combined chemical DNA demethylation of field-collected seed material from predominantly sexually reproducing species and rearing offsping under common climatic conditions to examine DNA methylation in an ecological-evolutionary context. The contrast of chemically treated (demethylated) plants, whose variation in DNA methylation was artificially reduced, and untreated control plants of the same species allowed me to study the impact of this mechanism on adaptive trait differentiation and local adaptation. With this experimental background, I conducted three studies examining the effect of DNA methylation in non-native species along a climatic gradient and also between climatically divergent regions. The first study focused on adaptive trait differentiation in two invasive perennial goldenrod species, Solidago canadensis sensu latu and S. gigantea AITON, along a climate gradient of more than 1000 km in length in Central Europe. I found population differences in flowering timing, plant height, and biomass in the temporally longer-established S. canadensis, but only in the number of regrowing shoots for S. gigantea. While S. canadensis did not show any population structure, I was able to identify three genetic groups along this climatic gradient in S. gigantea. Surprisingly, demethylated plants of both species showed no change in the majority of traits studied. In the subsequent second study, I focused on the longer-established goldenrod species S. canadensis and used molecular analyses to infer spatial epigenetic and genetic population differences in the same specimens from the previous study. I found weak genetic but no epigenetic spatial variation between populations. Additionally, I was able to identify one genetic marker and one epigenetic marker putatively susceptible to selection. However, the results of this study reconfirmed that the epigenetic mechanism of DNA methylation appears to be hardly involved in adaptive processes within the new range in S. canadensis. Finally, I conducted a third study in which I reciprocally transplanted short-lived plant species between two climatically divergent regions in Germany to investigate local adaptation at the plant family level. For this purpose, I used four plant families (Amaranthaceae, Asteraceae, Plantaginaceae, Solanaceae) and here I additionally compared between non-native and native plant species. Seeds were transplanted to regions with a distance of more than 600 kilometers and had either a temperate-oceanic or a temperate-continental climate. In this study, some species were found to be maladapted to their own local conditions, both in non-native and native plant species alike. In demethylated individuals of the plant species studied, DNA methylation had inconsistent but species-specific effects on survival and biomass production. The results of this study highlight that DNA methylation did not make a substantial contribution to local adaptation in the non-native as well as native species studied. In summary, my work showed that DNA methylation plays a negligible role in both adaptive trait variation along climatic gradients and local adaptation in non-native plant species that either exhibit a high degree of genetic variation or rely mainly on sexual reproduction with low clonal propagation. I was able to show that the adaptive success of these non-native plant species can hardly be explained by DNA methylation, but could be a possible consequence of multiple introductions, dispersal corridors and meta-population dynamics. Similarly, my results illustrate that the use of plant species that do not predominantly reproduce clonally and are not model plants is essential to characterize the effect size of epigenetic mechanisms in an ecological-evolutionary context. N2 - Die zunehmende Eintragung nicht-heimischer Pflanzenarten kann eine Gefahr für die lokale Artenvielfalt darstellen. Die Grundlagen einer erfolgreichen pflanzlichen Ausbreitung sind jedoch nicht abschließend geklärt, zumal sich diese Arten innerhalb kurzer Zeit an das neue Verbreitungsgebiet anpassen können trotz anfänglich reduzierter genetischer Vielfalt der Startpopulationen. In diesem Kontext gilt DNA-Methylierung als vielversprechend, um erfolgreiche Anpassungsmechanismen im neuen Lebensraum zu erklären. Bei der DNA-Methylierung handelt es sich um eine vererbbare Variation der Genaktivität, ohne dass die zugrundeliegende genetische Erbinformation verändert wird. Damit gehört DNA-Methylierung zu den sogenannten epigenetischen Mechanismen, wurde jedoch vorwiegend bei sich klonal vermehrenden Pflanzenarten oder genetischen Modellpflanzen untersucht. Ein Verständnis dieses epigenetischen Mechanismus im Zusammenhang mit nicht-einheimischen, sich vorwiegend sexuell reproduzierenden Pflanzenarten erweitert das Wissen in der Biodiversitätsforschung zur Interaktion zwischen Pflanzen und ihrem Lebensraum und kann, darauf aufbauend, präzisere Maßnahmen in der Naturschutzbiologie ermöglichen. Für meine Studien kombinierte ich die chemische DNA-Demethylierung von im Freiland gesammeltem Samenmaterial sich vorwiegend sexuell fortpflanzender Arten und die Aufzucht unter gemeinsamen klimatischen Bedingungen, um DNA-Methylierung im ökologisch-evolutionären Kontext zu untersuchen. Der Kontrast von chemisch behandelten (demethylierten) Pflanzen, deren Methylierungsvariation nun künstlich verringert war, und unbehandelten Kontrollpflanzen derselben Art ermöglichte mir die Auswirkung dieses Mechanismus auf adaptive Merkmalsvariationen und lokale Anpassung zu studieren. Vor diesem experimentellen Hintergrund führte ich drei Studien durch, um die Auswirkung von DNA-Methylierung bei nicht-einheimischen Pflanzenarten entlang eines klimatischen Gradienten und zwischen zwei klimatisch unterschiedlichen Regionen zu untersuchen. Die erste Studie konzentrierte sich auf adaptive Merkmalsveränderungen bei Nachkommen von zwei invasiven, mehrjährigen Goldrutenarten, Solidago canadensis sensu latu und S. gigantea AITON, entlang eines Klimagradienten von mehr als 1000 km Länge in Zentraleuropa. Ich fand graduelle Unterschiede im Blühzeitpunkt, in der Pflanzenhöhe und der Biomasse bei der zeitlich länger etablierten S. canadensis, bei S. gigantea jedoch nur in der Anzahl der nachwachsenden Triebe. Während S. canadensis keinerlei Populationsstruktur aufwies, konnte ich bei S. gigantea drei genetische Gruppen entlang dieses Klimagradienten identifizieren. Überraschenderweise zeigten demethylierte Pflanzen beider Arten keine Veränderung in der überwiegenden Anzahl der untersuchten Merkmale. In der darauffolgenden zweiten Studie konzentrierte ich mich auf die länger etablierte Goldrutenart S. canadensis und verwendete molekulare Analysen, um räumliche epigenetische und genetische Populationunterschiede aus den Exemplaren der vorhergehenden Studie abzuleiten. Ich fand schwache genetische aber keine epigenetische räumliche Variation zwischen den Populationen. Zusätzlich konnte ich einen genetischen und einen epigenetischen Marker identifizieren, welcher potentiell unter Selektion stehen könnte. Allerdings bestätigten die Ergebnisse dieser Studie erneut, dass DNA-Methylierung bei S. canadensis kaum in die Anpassung an das neue Verbreitungsgebiet involviert zu sein scheint. Schließlich führte ich eine dritte Studie durch, in welcher ich Samen kurzlebiger Pflanzenarten reziprok zwischen zwei klimatisch unterschiedlichen Regionen in Deutschland transplantierte, um lokale Anpassung auf Ebene der Pflanzenfamilien zu untersuchen. Zu diesem Zweck nutze ich vier Pflanzenfamilien (Amaranthaceae, Asteraceae, Plantaginaceae, Solanaceae), wobei ich hier auch zwischen nicht-heimischen und heimischen Pflanzenarten verglich. Beide Regionen lagen mehr als 600 Kilometer voneinander entfernt und wiesen entweder ein gemäßigt-ozeanisches oder gemäßigt-kontinentales Klima auf. In dieser Studie zeigte sich für einige—sowohl nicht-einheimische als auch einhimische—Arten eine Fehlanpassung an die eigenen lokalen Bedingungen. In demethylierten Individuen der untersuchten Pflanzenarten wirkte sich die DNA-Methylierung widersprüchlich, aber artspezifisch auf das Überleben und die Biomasseproduktion aus. Die Ergebnisse dieser Studie unterstreichen, dass DNA-Methylierung einen vernachlässigbaren Beitrag zur lokalen Anpassung bei den untersuchten nicht-heimischen, aber auch einheimischen Arten leistete. Zusammenfassend konnte ich mit dieser Arbeit festellen, dass DNA-Methylierung bei nicht-einheimischen Pflanzenarten eine untergeordnete Rolle sowohl bei der adaptiven Merkmalsvariation entlang von Klimagradienten als auch der lokalen Anpassung an klimatisch unterschiedliche Regionen spielt, wenn diese Pflanzenarten eine hohe genetische Vielfalt aufweisen und sich hauptsächlich sexuell vermehren. Ich konnte zeigen, dass der Anpassungserfolg dieser nicht-einheimischen Pflanzenarten kaum durch DNA-Methylierung erklärbar ist, sondern vielmehr eine mögliche Folge mehrfacher Eintragungen, von Ausbreitungskorridoren und Meta-Populationsdynamiken sein könnte. Die Ergebnisse dieser Studien verdeutlichen ebenso, dass die Verwendung von Pflanzenarten, die sich nicht überwiegend klonal vermehren und keine genetischen Modellpflanzen sind, unerlässlich ist, um die Effektstärke epigenetischer Mechanismen im ökologisch-evolutionären Kontext zu charakterisieren. KW - common-garden experiment KW - reciprocal transplant experiment KW - epigenetics KW - cytosine methylation KW - zebularine KW - adaptive differentiation KW - local adaptation KW - microsatellites KW - Solidago canadensis KW - Solidago gigantea KW - Amaranthus retroflexus KW - Chenopodium album KW - Erigeron canadensis KW - Erigeron annuus KW - Lactuca serriola KW - Senecio vulgaris KW - Sonchus oleraceus KW - Tripleurospermum inodorum KW - Veronica persica KW - Plantago major KW - Datura stramonium KW - Solanum nigrum KW - latitudinal clines KW - population structure KW - invasive KW - ruderal KW - non-native KW - Central Europe KW - Germany KW - AFLP KW - MSAP KW - spatial autocorrelation KW - genome scan KW - Gemeinschaftsgarten-Experiment KW - reziprokes Transplantationsexperiment KW - Epigenetik KW - Cytosin-Methylierung KW - Zebularin KW - adaptive Differenzierung KW - lokale Anpassung KW - Mikrosatelliten KW - Breitengrad KW - Ökokline KW - Populationsstruktur KW - invasiv KW - ruderal KW - nicht-einheimisch KW - Mitteleuropa KW - Deutschland KW - AFLP KW - MSAP KW - räumliche Autokorrelation KW - Genom-Scan Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-568844 ER - TY - THES A1 - Folkertsma, Remco T1 - Evolutionary adaptation to climate in microtine mammals N2 - Understanding how organisms adapt to their local environment is a major focus of evolutionary biology. Local adaptation occurs when the forces of divergent natural selection are strong enough compared to the action of other evolutionary forces. An improved understanding of the genetic basis of local adaptation can inform about the evolutionary processes in populations and is of major importance because of its relevance to altered selection pressures due to climate change. So far, most insights have been gained by studying model organisms, but our understanding about the genetic basis of local adaptation in wild populations of species with little genomic resources is still limited. With the work presented in this thesis I therefore set out to provide insights into the genetic basis of local adaptation in populations of two voles species: the common vole (Microtus arvalis) and the bank vole (Myodes glareolus). Both voles species are small mammals, they have a high evolutionary potential compared to their dispersal capabilities and are thus likely to show genetic responses to local conditions, moreover, they have a wide distribution in which they experience a broad range of different environmental conditions, this makes them an ideal species to study local adaptation. The first study focused on producing a novel mitochondrial genome to facilitate further research in M. arvalis. To this end, I generated the first mitochondrial genome of M. arvalis using shotgun sequencing and an iterative mapping approach. This was subsequently used in a phylogenetic analysis that produced novel insights into the phylogenetic relationships of the Arvicolinae. The following two studies then focused on the genetic basis of local adaptation using ddRAD-sequencing data and genome scan methods. The first of these involved sequencing the genomic DNA of individuals from three low-altitude and three high-altitude M. arvalis study sites in the Swiss Alps. High-altitude environments with their low temperatures and low levels of oxygen (hypoxia) pose considerable challenges for small mammals. With their small body size and proportional large body surface they have to sustain high rates of aerobic metabolism to support thermogenesis and locomotion, which can be restricted with only limited levels of oxygen available. To generate insights into high-altitude adaptation I identified a large number of single nucleotide polymorphisms (SNPs). These data were first used to identify high levels of differentiation between study sites and a clear pattern of population structure, in line with a signal of isolation by distance. Using genome scan methods, I then identified signals of selection associated with differences in altitude in genes with functions related to oxygen transport into tissue and genes related to aerobic metabolic pathways. This indicates that hypoxia is an important selection pressure driving local adaptation at high altitude in M. arvalis. A number of these genes were linked with high-altitude adaptation in other species before, which lead to the suggestion that high-altitude populations of several species have evolved in a similar manner as a response to the unique conditions at high altitude The next study also involved the genetic basis of local adaptation, here I provided insights into climate-related adaptation in M. glareolus across its European distribution. Climate is an important environmental factor affecting the physiology of all organisms. In this study I identified a large number of SNPs in individuals from twelve M. glareolus populations distributed across Europe. I used these, to first establish that populations are highly differentiated and found a strong pattern of population structure with signal of isolation by distance. I then employed genome scan methods to identify candidate loci showing signals of selection associated with climate, with a particular emphasis on polygenic loci. A multivariate analysis was used to determine that temperature was the most important climate variable responsible for adaptive genetic variation among all variables tested. By using novel methods and genome annotation of related species I identified the function of genes of candidate loci. This showed that genes under selection have functions related to energy homeostasis and immune processes. Suggesting that M. glareolus populations have evolved in response to local temperature and specific local pathogenic selection pressures. The studies presented in this thesis provide evidence for the genetic basis of local adaptation in two vole species across different environmental gradients, suggesting that the identified genes are involved in local adaptation. This demonstrates that with the help of novel methods the study of wild populations, which often have little genomic resources available, can provide unique insights into evolutionary processes. N2 - Ein Schwerpunkt der Evolutionsbiologie besteht darin, zu verstehen, wie sich Organismen an ihre lokale Umgebung anpassen. Lokale Anpassung tritt ein, wenn die Kräfte der divergierenden natürlichen Selektion im Vergleich zu anderen evolutionären Kräften stark genug sind. Ein verbessertes Verständnis der genetischen Grundlagen der lokalen Anpassung kann Informationen über die Evolutionsprozesse in Populationen liefern und ist durch seine Relevanz für durch den Klimawandel bedingte veränderte Selektionsdrücke von großer Bedeutung. Bisher wurden die meisten Erkenntnisse durch Untersuchungen an Modellorganismen gewonnen. Jedoch ist das Verständnis der genetischen Grundlagen der lokalen Anpassung in Wildpopulationen von Arten mit geringen genomischen Ressourcen noch immer begrenzt. Mit den in dieser Doktorarbeit vorgestellten Untersuchungen war es daher mein Ziel, Einblicke in die genetischen Grundlagen der lokalen Anpassung in Populationen von zwei Wühlmausarten zu geben: der Feldmaus (Microtus arvalis) und der Rötelmaus (Myodes glareolus). Bei beiden handelt es sich um kleine Säugetiere mit einem, im Vergleich zu ihrer Ausbreitungsfähigkeit, hohen Evolutionspotential. Daher ist anzunehmen, dass sie genetische Reaktionen auf lokale Bedingungen zeigen. Hinzu kommt, dass sie aufgrund ihrer großen Verbreitung ein großes Spektrum an verschiedenen Umweltbedingungen erfahren, was sie zu einer idealen Spezies, für die Untersuchung lokaler Anpassung macht. Die erste Studie dieser Arbeit konzentrierte sich auf die Erstellung eines bisher nicht verfügbaren mitochondriellen Genoms, um die weitere Forschung an M. arvalis zu erleichtern. Dies wurde mittels Shotgun-Sequenzierung und eines iterativen Kartierungsansatzes erreicht. Anschließend wurde es in einer phylogenetischen Analyse verwendet, die neue Erkenntnisse über die phylogenetischen Beziehungen der Arvicolinae lieferte. Die folgenden zwei Studien konzentrierten sich auf die genetische Basis der lokalen Anpassung unter Verwendung von ddRAD-Sequenzierungsdaten und Genom-Scan-Methoden. Die erste umfasste die Sequenzierung der genomischen DNA von Individuen aus drei M. arvalis-Untersuchungsgebieten in geringer Höhe und drei in großer Höhe in den Schweizer Alpen. Umgebungen in großer Höhe mit niedrigen Temperaturen und niedrigem Sauerstoffgehalt (Hypoxie) stellen kleine Säugetiere vor erhebliche Herausforderungen. Aufgrund ihrer geringen Körpergröße und proportional großen Körperoberfläche müssen sie hohe aerobe Stoffwechselraten aufrechterhalten, um die Thermogenese und Fortbewegung zu unterstützen, die mit begrenzter Sauerstoffverfügbarkeit eingeschränkt sein können. Um Einblicke in die Höhenanpassung zu erhalten, habe ich eine große Anzahl von Einzelnukleotidpolymorphismen (SNPs) identifiziert. Mit Hilfe dieser Daten wurden ein hohes Maß an Differenzierung zwischen den Untersuchungsorten und ein klares Muster der Populationsstruktur zusammen mit einem isolation-by-distance Signal identifiziert. Unter Verwendung von Genom-Scan-Methoden identifizierte ich Selektionssignale in Genen, die mit Höhenunterschieden verbunden werden. Diese besitzen Funktionen, die mit dem Sauerstofftransport in das Gewebe sowie mit aeroben Stoffwechselwegen zusammenhängen. Dies weist darauf hin, dass Hypoxie ein wichtiger Selektionsdruck für die lokale Anpassung in großer Höhe für M. arvalis ist. Einige dieser Gene sind bereits früher mit der Höhenanpassung bei anderen Arten in Verbindung gebracht worden. Dies führte zu der Annahme, dass sich Populationen in großer Höhe lebender verschiedener Arten in Anpassung an die einzigartigen Bedingungen in großer Höhe auf ähnliche Weise entwickelt haben. Die nächste Studie befasste sich ebenfalls mit den genetischen Grundlagen der lokalen Anpassung. Hier stellte ich Erkenntnisse über die klimabedingte Anpassung von M. glareolus in ihrem europäischen Verbreitungsgebiet vor. Das Klima ist ein wichtiger Umweltfaktor, der die Physiologie aller Organismen beeinflusst. In dieser Studie identifizierte ich zehntausende SNPs bei Individuen aus zwölf in ganz Europa verteilten M. glareolus-Populationen. Diese ergaben eine starke Differenzierung der Populationen mit deutlicher Populationsstruktur und einem Signal für isolation-by-distance. Anschließend verwendete ich Genom-Scan-Methoden, um mögliche Loci zu identifizieren, die mit dem Klima verbundene Selektionssignale aufweisen, wobei der Schwerpunkt dabei auf polygenen Loci lag. Eine Multivariaten Analysemethode ermittelte, dass die Temperatur die wichtigste Klimavariable unter allen getesteten Variablen ist, die für die adaptive genetische Variation verantwortlich ist. Mit Hilfe neuartiger Methoden und der Annotation von Genomen verwandter Spezies identifizierte ich die Funktion von Genen an Kandidatenloci. Diese zeigten, dass die unter Selektion stehenden Gene Funktionen im Zusammenhang mit der Energiehomöostase und den Immunprozessen ausüben. Dies wiederum deutet darauf hin, dass sich die Populationen von M. glareolus in Reaktion auf die lokale Temperatur und den spezifischen lokalen Selektionsdruck für Krankheitserreger entwickelt haben. Die in dieser Arbeit vorgestellten Studien liefern Belege für die genetische Basis der lokalen Anpassung auf verschiedene Umweltgradienten in zwei Wühlmausarten. Dies deutet darauf hin, dass die identifizierten Gene an der lokalen Anpassung beteiligt sind. Darüber hinaus zeigt dies, dass Untersuchungen wildlebender Populationen mit geringen genomischen Ressourcen durch den Einsatz neuartiger Methoden einzigartige Einblicke in evolutionäre Prozesse ermöglichen können. T2 - Evolutionäre Klimaanpassungen bei Wühlmausarten KW - Genomics KW - Local adaptation KW - Altitude KW - Climate KW - Microtus arvalis KW - Myodus glareolus KW - Höhe KW - Klima KW - Genomik KW - lokale Anpassung KW - Feldmaus KW - Rötelmaus Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476807 ER - TY - THES A1 - Romero Mujalli, Daniel T1 - Ecological modeling of adaptive evolutionary responses to rapid climate change T1 - Ökologische Modellierung anpassungsfähiger evolutionärer Reaktionen auf schnellen Klimawandel N2 - A contemporary challenge in Ecology and Evolutionary Biology is to anticipate the fate of populations of organisms in the context of a changing world. Climate change and landscape changes due to anthropic activities have been of major concern in the contemporary history. Organisms facing these threats are expected to respond by local adaptation (i.e., genetic changes or phenotypic plasticity) or by shifting their distributional range (migration). However, there are limits to their responses. For example, isolated populations will have more difficulties in developing adaptive innovations by means of genetic changes than interconnected metapopulations. Similarly, the topography of the environment can limit dispersal opportunities for crawling organisms as compared to those that rely on wind. Thus, populations of species with different life history strategy may differ in their ability to cope with changing environmental conditions. However, depending on the taxon, empirical studies investigating organisms’ responses to environmental change may become too complex, long and expensive; plus, complications arising from dealing with endangered species. In consequence, eco-evolutionary modeling offers an opportunity to overcome these limitations and complement empirical studies, understand the action and limitations of underlying mechanisms, and project into possible future scenarios. In this work I take a modeling approach and investigate the effect and relative importance of evolutionary mechanisms (including phenotypic plasticity) on the ability for local adaptation of populations with different life strategy experiencing climate change scenarios. For this, I performed a review on the state of the art of eco-evolutionary Individual-Based Models (IBMs) and identify gaps for future research. Then, I used the results from the review to develop an eco-evolutionary individual-based modeling tool to study the role of genetic and plastic mechanisms in promoting local adaption of populations of organisms with different life strategies experiencing scenarios of climate change and environmental stochasticity. The environment was simulated through a climate variable (e.g., temperature) defining a phenotypic optimum moving at a given rate of change. The rate of change was changed to simulate different scenarios of climate change (no change, slow, medium, rapid climate change). Several scenarios of stochastic noise color resembling different climatic conditions were explored. Results show that populations of sexual species will rely mainly on standing genetic variation and phenotypic plasticity for local adaptation. Population of species with relatively slow growth rate (e.g., large mammals) – especially those of small size – are the most vulnerable, particularly if their plasticity is limited (i.e., specialist species). In addition, whenever organisms from these populations are capable of adaptive plasticity, they can buffer fitness losses in reddish climatic conditions. Likewise, whenever they can adjust their plastic response (e.g., bed-hedging strategy) they will cope with bluish environmental conditions as well. In contrast, life strategies of high fecundity can rely on non-adaptive plasticity for their local adaptation to novel environmental conditions, unless the rate of change is too rapid. A recommended management measure is to guarantee interconnection of isolated populations into metapopulations, such that the supply of useful genetic variation can be increased, and, at the same time, provide them with movement opportunities to follow their preferred niche, when local adaptation becomes problematic. This is particularly important for bluish and reddish climatic conditions, when the rate of change is slow, or for any climatic condition when the level of stress (rate of change) is relatively high. N2 - Eine aktuelle Herausforderung in der Ökologie und Evolutionsbiologie besteht darin, das Schicksal von Populationen verschiedener Lebewesen im Kontext einer sich verändernden Welt zu antizipieren. Der Klimawandel und die durch anthropologische Aktivitäten verursachten Landschaftsveränderungen sind im Laufe der Geschichte von großer Bedeutung geworden. Von den Organismen, die sich diesen Veränderungen stellen, wird erwartet, dass sie durch lokale Anpassung (d.h. genetische Veränderungen oder phänotypische Plastizität) oder durch Verschiebung ihres Verbreitungsgebietes (Migration) darauf reagieren. Allerdings sind diese Reaktionen begrenzt. So werden beispielsweise isolierte Populationen mehr Schwierigkeiten bei der Entwicklung adaptiver Neuheiten mittels genetischer Variation haben als vernetzte Metapopulationen. Ebenso kann die Topographie der Umgebung die Ausbreitungsmöglichkeiten für zum Beispiel kriechende Organismen im Vergleich zu denen, die auf Wind angewiesen sind, einschränken. So können Populationen von Arten mit unterschiedlichen Lebensstrategien verschiedene Fähigkeiten haben, mit den sich ändernden Umweltbedingungen umzugehen. Empirische Studien, die die Reaktionen von Organismen auf Umweltveränderungen untersuchen, können jedoch, je nach Taxon, zu komplex, langwierig und teuer werden. Ebenso sollten Komplikationen im Umgang mit gefährdeten Arten nicht außer Acht gelassen werden. Die ökoevolutionäre Modellierung bietet jedoch die Möglichkeit, diese Einschränkungen zu überwinden und empirische Studien zu ergänzen, die Wirkung und Grenzen der zugrunde liegenden Mechanismen zu verstehen und mögliche Zukunftsszenarien zu erstellen. In dieser Arbeit untersuche ich mittels einer Modellierungsmethode die Wirkung und relative Bedeutung evolutionärer Mechanismen (einschließlich phänotypischer Plastizität) auf die Fähigkeit zur lokalen Anpassung von Populationen mit unterschiedlichen Lebensstrategien, die Szenarien des Klimawandels durchleben. Dazu habe ich in einem Review den Stand der Technik ökoevolutionärer individuenbasierender Modelle (Individual-Based Models; IBMs) zusammengefasst und Ansätze für eine zukünftige Forschung identifiziert. Die Erkenntnisse des Reviews nutzte ich, um ein ökoevolutionäres, individuelles Modellierungsprogramm zu entwickeln. Dieses analysiert die Rolle genetischer und plastischer Mechanismen zur Förderung der lokalen Anpassung organismischer Populationen mit unterschiedlichen Lebensstrategien, welche Szenarien des Klimawandels und der ökologischen Stochastik erfahren. Die Umweltbedingungen wurden durch eine klimatische Variable (z.B. Temperatur) simuliert, die ein phänotypisches Optimum definiert, das sich mit einer bestimmten Änderungsrate bewegt. Verschiedene Änderungsraten wurden angewandt, um unterschiedliche Szenarien des Klimawandels darzustellen (keine Veränderung, langsamer, mittlerer, schneller Klimawandel). Es wurden mehrere Szenarien stochastischen Farbrauschens untersucht, die verschiedene klimatische Bedingungen widerspiegeln. Die Ergebnisse zeigen, dass Populationen sexueller Arten hauptsächlich auf genetische Variation und phänotypische Plastizität hinsichtlich lokalen Anpassung angewiesen sind. Populationen von Arten mit relativ langsamer Wachstumsrate (z.B. große Säugetiere), und insbesondere die mit kleiner Populationsgröße, sind am anfälligsten, vor allem wenn ihre Plastizität begrenzt ist (d.h. spezialisierte Arten). Wenn Individuen dieser Populationen zu adaptiver Plastizität fähig sind, können sie Fitnessverluste unter „rötlichen“ Klimabedingungen ausgleichen. Zugleich können diese Populationen durch Anpassung der Plastizität auch unter bläulichen Umweltbedingungen zurecht kommen (z.B. Bed-Hedging-Strategie). Im Gegensatz dazu können sich Lebensstrategen mit hoher Reproduktionszahl auf nicht-adaptive Plastizität zur lokalen Anpassung an neue Umweltbedingungen verlassen, es sei denn, die Änderungsrate ist zu schnell. Eine empfohlene Handlungsmaßnahme ist es, die Eingliederung von isolierten Populationen in Metapopulationen zu gewährleisten, so dass die genetische Variation erhöht werden kann. Wenn eine lokale Anpassung problematisch wird, sollte ihnen gleichzeitig Migrationsfreiraum gegeben werden, um ihrer bevorzugten Nische zu folgen. Dies ist besonders wichtig für „bläuliche“ und „rötliche“ Klimabedingungen, bei denen die Änderungsrate langsam ist, oder für jede klimatische Bedingung, wenn die Belastung (Änderungsrate) relativ hoch ist. KW - climate change KW - local adaptation KW - plasticity KW - evolution KW - individual-based model KW - Klimawandel KW - lokale Anpassung KW - Plastizität KW - Evolution KW - Individuen-basierende Modelle Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430627 ER -