TY - GEN A1 - Marrucci, Monica A1 - Zeilinger, Gerold A1 - Ribolini, Adriano A1 - Schwanghart, Wolfgang T1 - Origin of knickpoints in an alpine context subject to different perturbing factors, Stura Valley, Maritime Alps (North-Western Italy) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Natural catchments are likely to show the existence of knickpoints in their river networks. The origin and genesis of the knickpoints can be manifold, considering that the present morphology is the result of the interactions of different factors such as tectonic movements, quaternary glaciations, river captures, variable lithology, and base-level changes. We analyzed the longitudinal profiles of the river channels in the Stura di Demonte Valley (Maritime Alps) to identify the knickpoints of such an alpine setting and to characterize their origins. The distribution and the geometry of stream profiles were used to identify the possible causes of the changes in stream gradients and to define zones with genetically linked knickpoints. Knickpoints are key geomorphological features for reconstructing the evolution of fluvial dissected basins, when the different perturbing factors affecting the ideally graded fluvial system have been detected. This study shows that even in a regionally small area, perturbations of river profiles are caused by multiple factors. Thus, attributing (automatically)-extracted knickpoints solely to one factor, can potentially lead to incomplete interpretations of catchment evolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1070 KW - knickpoint KW - river longitudinal profile KW - Maritime Alps Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472642 SN - 1866-8372 IS - 1070 ER - TY - JOUR A1 - Marrucci, Monica A1 - Zeilinger, Gerold A1 - Ribolini, Adriano A1 - Schwanghart, Wolfgang T1 - Origin of Knickpoints in an Alpine Context Subject to Different Perturbing Factors, Stura Valley, Maritime Alps (North-Western Italy) JF - Geosciences N2 - Natural catchments are likely to show the existence of knickpoints in their river networks. The origin and genesis of the knickpoints can be manifold, considering that the present morphology is the result of the interactions of different factors such as tectonic movements, quaternary glaciations, river captures, variable lithology, and base-level changes. We analyzed the longitudinal profiles of the river channels in the Stura di Demonte Valley (Maritime Alps) to identify the knickpoints of such an alpine setting and to characterize their origins. The distribution and the geometry of stream profiles were used to identify the possible causes of the changes in stream gradients and to define zones with genetically linked knickpoints. Knickpoints are key geomorphological features for reconstructing the evolution of fluvial dissected basins, when the different perturbing factors affecting the ideally graded fluvial system have been detected. This study shows that even in a regionally small area, perturbations of river profiles are caused by multiple factors. Thus, attributing (automatically)-extracted knickpoints solely to one factor, can potentially lead to incomplete interpretations of catchment evolution. KW - knickpoint KW - river longitudinal profile KW - Maritime Alps Y1 - 2018 U6 - https://doi.org/10.3390/geosciences8120443 SN - 2076-3263 VL - 8 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Neely, Alexander B. A1 - Bookhagen, Bodo A1 - Burbank, Douglas W. T1 - An automated knickzone selection algorithm (KZ-Picker) to analyze transient landscapes: Calibration and validation JF - Journal of geophysical research : Earth surface N2 - Streams commonly respond to base-level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base-level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a -space (drainage-area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30m resolution digital elevation models (DEMs) of six catchments (trunk-stream lengths: 2.1-5.4km) on Santa Cruz Island, southern California. On the 1m DEM, algorithm-selected knickzones confirm 93% of handpicked knickzone positions (n=178) to a spatial accuracy of 100m, 88% to an accuracy within 50m, and 46% to an accuracy within 10m. Using 10 and 30m DEMs, accuracy is similar: 88-86% to 100m and 82% to 50m (n=38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes. Plain Language Summary The shape of rivers reflects the environments that they flow through and the environments that they link together: mountains and oceans. Anywhere along the length of a river, changes in environmental conditions are propagated upstream and downstream as the river changes its morphology to match the new environmental conditions. Commonly, rivers steepen as land uplifts faster in regions of high tectonic convergence. The steepening of river gradients is propagated upstream and can be mapped to trace zones of high tectonic activity across landscapes and estimate the source and timing of environmental change. Such insights may indicate regions where earthquakes have become more frequent in the recent past and how rivers respond to these changes. In this submission, we detail an algorithm that can use digital topographic data (similar to google earth), to automatically map and measure anomalously steep river reaches across continental scales. This technology can highlight areas that have experienced recent sustained changes in environmental conditions, evident by changes in the morphology of rivers. Such environmental conditions could be changes in tectonic uplift and earthquake activity, changes in sea level, changes in land-use, or changes in climate, all factors that can produce measurable differences in river morphology over time. KW - knickpoint KW - transient KW - knickzone KW - incision KW - relict landscape KW - Santa Cruz Island Y1 - 2017 U6 - https://doi.org/10.1002/2017JF004250 SN - 2169-9003 SN - 2169-9011 VL - 122 SP - 1236 EP - 1261 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Miller, Scott R. A1 - Sak, Peter B. A1 - Kirby, Eric A1 - Bierman, Paul R. T1 - Neogene rejuvenation of central appalachian topography evidence for differential rock uplift from stream profiles and erosion rates JF - Earth & planetary science letters N2 - The persistence of topography within ancient orogens remains one of the outstanding questions in landscape evolution. In the eastern North American Appalachians, this question is manifest in the outstanding problem of whether topographic relief is in a quasi-equilibrium state, decaying slowly over many millennia, or whether relief has increased during the late Cenozoic. Here we present quantitative geomorphic data from the nonglaciated portion of the Susquehanna River drainage basin that provide insight into these end-member models. Analysis of channel profiles draining upland catchments in the northern Valley and Ridge, Appalachian Plateau, Blue Ridge, and Piedmont provinces reveals that a large number of streams have well defined knickpoints clustered at 300-600 m elevation but not systematically associated with transitions from weak to resistant substrate. Cosmogenic Be-10 inventories of modern stream sediment indicate that erosion rates are spatially variable, ranging from similar to 5-30 m/Myr above knickpoints to similar to 50-100 m/Myr below knickpoints. Overall, channel gradients, normalized for drainage area, scale linearly with catchment-averaged erosion rates. Collectively, regionally consistent spatial relationships among erosion rate, channel steepness, and knickpoints reveal an ongoing wave of transient channel adjustment to a change in relative base level. Reconstructions of relict channel profiles above knickpoints suggest that higher rates of incision are associated with similar to 100-150 m of relative base level fall that accompanied epierogenic rock uplift rather than a change to a more erosive climate or drainage reorganization. Channel response timescales imply that the onset of relative base level change predates similar to 3.5 Ma and may have begun as early as similar to 15 Ma. We suggest that adjustment of the channel network was likely driven by changes in mantle dynamics along the eastern seaboard of North America during the Neogene. KW - Appalachian Mountains KW - stream profile KW - knickpoint KW - transient erosion KW - cosmogenic nuclides Y1 - 2013 U6 - https://doi.org/10.1016/j.epsl.2013.04.007 SN - 0012-821X SN - 1385-013X VL - 369 IS - 2 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam ER -