TY - JOUR A1 - Ringel, Lisa Maria A1 - Somogyvári, Márk A1 - Jalali, Mohammadreza A1 - Bayer, Peter T1 - Comparison of hydraulic and tracer tomography for discrete fracture network inversion JF - Geosciences N2 - Fractures serve as highly conductive preferential flow paths for fluids in rocks, which are difficult to exactly reconstruct in numerical models. Especially, in low-conductive rocks, fractures are often the only pathways for advection of solutes and heat. The presented study compares the results from hydraulic and tracer tomography applied to invert a theoretical discrete fracture network (DFN) that is based on data from synthetic cross-well testing. For hydraulic tomography, pressure pulses in various injection intervals are induced and the pressure responses in the monitoring intervals of a nearby observation well are recorded. For tracer tomography, a conservative tracer is injected in different well levels and the depth-dependent breakthrough of the tracer is monitored. A recently introduced transdimensional Bayesian inversion procedure is applied for both tomographical methods, which adjusts the fracture positions, orientations, and numbers based on given geometrical fracture statistics. The used Metropolis-Hastings-Green algorithm is refined by the simultaneous estimation of the measurement error’s variance, that is, the measurement noise. Based on the presented application to invert the two-dimensional cross-section between source and the receiver well, the hydraulic tomography reveals itself to be more suitable for reconstructing the original DFN. This is based on a probabilistic representation of the inverted results by means of fracture probabilities. KW - hydraulic tomography KW - tracer tomography KW - DFN KW - Bayesian inversion KW - heterogeneity KW - fracture KW - hydrogeophysics Y1 - 2019 U6 - https://doi.org/10.3390/geosciences9060274 SN - 2076-3263 VL - 9 IS - 6 PB - MDPI CY - Basel ER - TY - GEN A1 - Ringel, Lisa Maria A1 - Somogyvári, Márk A1 - Jalali, Mohammadreza A1 - Bayer, Peter T1 - Comparison of hydraulic and tracer tomography for discrete fracture network inversion T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Fractures serve as highly conductive preferential flow paths for fluids in rocks, which are difficult to exactly reconstruct in numerical models. Especially, in low-conductive rocks, fractures are often the only pathways for advection of solutes and heat. The presented study compares the results from hydraulic and tracer tomography applied to invert a theoretical discrete fracture network (DFN) that is based on data from synthetic cross-well testing. For hydraulic tomography, pressure pulses in various injection intervals are induced and the pressure responses in the monitoring intervals of a nearby observation well are recorded. For tracer tomography, a conservative tracer is injected in different well levels and the depth-dependent breakthrough of the tracer is monitored. A recently introduced transdimensional Bayesian inversion procedure is applied for both tomographical methods, which adjusts the fracture positions, orientations, and numbers based on given geometrical fracture statistics. The used Metropolis-Hastings-Green algorithm is refined by the simultaneous estimation of the measurement error’s variance, that is, the measurement noise. Based on the presented application to invert the two-dimensional cross-section between source and the receiver well, the hydraulic tomography reveals itself to be more suitable for reconstructing the original DFN. This is based on a probabilistic representation of the inverted results by means of fracture probabilities. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 922 KW - hydraulic tomography KW - tracer tomography KW - DFN KW - Bayesian inversion KW - heterogeneity KW - fracture KW - hydrogeophysics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442616 SN - 1866-8372 IS - 922 ER - TY - GEN A1 - Clason, Caroline C. A1 - Mair, D. W. F. A1 - Nienow, P. W. A1 - Bartholomew, I. D. A1 - Sole, Andrew A1 - Palmer, Steven A1 - Schwanghart, Wolfgang T1 - Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lakes, suggesting efficient transfer of meltwater from the supraglacial to subglacial hydrological systems. Although considerable effort is currently being directed towards improved modelling of the controlling surface and basal processes, modelling the temporal and spatial evolution of the transfer of melt to the bed has received less attention. Here we present the results of spatially distributed modelling for prediction of moulins and lake drainages on the Leverett Glacier in Southwest Greenland. The model is run for the 2009 and 2010 ablation seasons, and for future increased melt scenarios. The temporal pattern of modelled lake drainages are qualitatively comparable with those documented from analyses of repeat satellite imagery. The modelled timings and locations of delivery of meltwater to the bed also match well with observed temporal and spatial patterns of ice surface speed-ups. This is particularly true for the lower catchment (< 1000 m a.s.l.) where both the model and observations indicate that the development of moulins is the main mechanism for the transfer of surface meltwater to the bed. At higher elevations (e.g. 1250-1500 m a.s.l.) the development and drainage of supraglacial lakes becomes increasingly important. At these higher elevations, the delay between modelled melt generation and subsequent delivery of melt to the bed matches the observed delay between the peak air temperatures and subsequent velocity speed-ups, while the instantaneous transfer of melt to the bed in a control simulation does not. Although both moulins and lake drainages are predicted to increase in number for future warmer climate scenarios, the lake drainages play an increasingly important role in both expanding the area over which melt accesses the bed and in enabling a greater proportion of surface melt to reach the bed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 513 KW - meltice-sheet motion KW - seasonal evolution KW - West Greenland KW - subglacial drainage KW - melt KW - lake KW - variability KW - fracture KW - acceleration KW - lubrication Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409053 SN - 1866-8372 IS - 513 ER -