TY - JOUR A1 - Arguello de Souza, Felipe Augusto A1 - Samprogna Mohor, Guilherme A1 - Guzman Arias, Diego Alejandro A1 - Sarmento Buarque, Ana Carolina A1 - Taffarello, Denise A1 - Mendiondo, Eduardo Mario T1 - Droughts in São Paulo BT - challenges and lessons for a water-adaptive society JF - Urban water journal N2 - Literature has suggested that droughts and societies are mutually shaped and, therefore, both require a better understanding of their coevolution on risk reduction and water adaptation. Although the Sao Paulo Metropolitan Region drew attention because of the 2013-2015 drought, this was not the first event. This paper revisits this event and the 1985-1986 drought to compare the evolution of drought risk management aspects. Documents and hydrological records are analyzed to evaluate the hazard intensity, preparedness, exposure, vulnerability, responses, and mitigation aspects of both events. Although the hazard intensity and exposure of the latter event were larger than the former one, the policy implementation delay and the dependency of service areas in a single reservoir exposed the region to higher vulnerability. In addition to the structural and non-structural tools implemented just after the events, this work raises the possibility of rainwater reuse for reducing the stress in reservoirs. KW - droughts KW - urban water supply KW - water crisis KW - drought risk KW - paired event KW - analysis KW - vulnerability Y1 - 2022 U6 - https://doi.org/10.1080/1573062X.2022.2047735 SN - 1573-062X SN - 1744-9006 VL - 20 IS - 10 SP - 1682 EP - 1694 PB - Taylor & Francis CY - London [u.a.] ER - TY - GEN A1 - Zaplata, Markus Klemens A1 - Nhabanga, Abel A1 - Stalmans, Marc A1 - Volpers, Thomas A1 - Burkart, Michael A1 - Sperfeld, Erik T1 - Grasses cope with high-contrast ecosystem conditions in the large outflow of the Banhine wetlands, Mozambique T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Ecosystems with highly pulsed water supply must be better understood as climate change may increase frequency and severity of intense storms, droughts and floods. Here we collected data over 3 years (2016-2018) in the episodic wetland outflow channel (Aluize), Banhine National Park, in which the system state changed from dry to wet to dry. Field sampling included vegetation records, small-scale vegetation zoning, the seed bank and water and soil quality. The same main plant species were found in both dry and wet conditions across the riverbed of the outflow channel. We found only very few diaspores of plants in the soil after prolonged drought. In the subsequent flooded state, we examined very dense vegetation on the water surface, which was dominated by the gramineous species Paspalidium obtusifolium. This species formed a compact floating mat that was rooted to the riverbed. The Cyperaceae Bolboschoenus glaucus showed high clonal growth in the form of root tubers, which likely serve as important food reservoir during drought. Soil and water analyses do not indicate a limitation by nutrients. We outline how resident people may change the plant community structure with an increasing practice of setting fire to the meadows in the dried-up riverbed to facilitate plant regrowth as food for their livestock. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1386 KW - Aluize KW - biological soil crusts KW - Changane KW - droughts KW - floating mat KW - flooded grasslands KW - multi‐ year flooding cycle KW - plant clonality KW - seed bank KW - temporary wetland Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-573515 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Guzman Arias, Diego Alejandro A1 - Samprogna Mohor, Guilherme A1 - Mendiondo, Eduardo Mario T1 - Multi-driver ensemble to evaluate the water utility business interruption cost induced by hydrological drought risk scenarios in Brazil JF - Urban water journal N2 - Climate change and increasing water demand in urban environments necessitate planning water utility companies' finances. Traditionally, methods to estimate the direct water utility business interruption costs (WUBIC) caused by droughts have not been clearly established. We propose a multi-driver assessment method. We project the water yield using a hydrological model driven by regional climate models under radiative forcing scenarios. We project water demand under stationary and non-stationary conditions to estimate drought severity and duration, which are linked with pricing policies recently adopted by the Sao Paulo Water Utility Company. The results showed water insecurity. The non-stationary trend imposed larger differences in the drought resilience financial gap, suggesting that the uncertainties of WUBIC derived from demand and climate models are greater than those associated with radiative forcing scenarios. As populations increase, proactively controlling demand is recommended to avoid or minimize reactive policy changes during future drought events, repeating recent financial impacts. KW - Business interruption cost KW - water utility company KW - hydrological KW - droughts KW - water security KW - urban water KW - climate change Y1 - 2022 U6 - https://doi.org/10.1080/1573062X.2022.2058564 SN - 1573-062X SN - 1744-9006 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Zaplata, Markus Klemens A1 - Nhabanga, Abel A1 - Stalmans, Marc A1 - Volpers, Thomas A1 - Burkart, Michael A1 - Sperfeld, Erik T1 - Grasses cope with high-contrast ecosystem conditions in the large outflow of the Banhine wetlands, Mozambique JF - African journal of ecology N2 - Ecosystems with highly pulsed water supply must be better understood as climate change may increase frequency and severity of intense storms, droughts and floods. Here we collected data over 3 years (2016-2018) in the episodic wetland outflow channel (Aluize), Banhine National Park, in which the system state changed from dry to wet to dry. Field sampling included vegetation records, small-scale vegetation zoning, the seed bank and water and soil quality. The same main plant species were found in both dry and wet conditions across the riverbed of the outflow channel. We found only very few diaspores of plants in the soil after prolonged drought. In the subsequent flooded state, we examined very dense vegetation on the water surface, which was dominated by the gramineous species Paspalidium obtusifolium. This species formed a compact floating mat that was rooted to the riverbed. The Cyperaceae Bolboschoenus glaucus showed high clonal growth in the form of root tubers, which likely serve as important food reservoir during drought. Soil and water analyses do not indicate a limitation by nutrients. We outline how resident people may change the plant community structure with an increasing practice of setting fire to the meadows in the dried-up riverbed to facilitate plant regrowth as food for their livestock. KW - Aluize KW - biological soil crusts KW - Changane KW - droughts KW - floating mat KW - flooded grasslands KW - multi‐ year flooding cycle KW - plant clonality KW - seed bank KW - temporary wetland Y1 - 2020 U6 - https://doi.org/10.1111/aje.12820 SN - 0141-6707 SN - 1365-2028 VL - 59 IS - 1 SP - 190 EP - 203 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ciemer, Catrin A1 - Rehm, Lars A1 - Kurths, Jürgen A1 - Donner, Reik Volker A1 - Winkelmann, Ricarda A1 - Boers, Niklas T1 - An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures JF - Environmental Research Letters N2 - Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months. KW - complex networks KW - droughts KW - prediction KW - Amazon rainforest Y1 - 2019 VL - 15 IS - 9 PB - IOP - Institute of Physics Publishing CY - Bristol ER - TY - GEN A1 - Ciemer, Catrin A1 - Rehm, Lars A1 - Kurths, Jürgen A1 - Donner, Reik Volker A1 - Winkelmann, Ricarda A1 - Boers, Niklas T1 - An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1207 KW - complex networks KW - droughts KW - prediction KW - Amazon rainforest Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525863 SN - 1866-8372 IS - 9 ER -