TY - JOUR A1 - Pikovskij, Arkadij T1 - Synchronization of oscillators with hyperbolic chaotic phases JF - Izvestija vysšich učebnych zavedenij : naučno-techničeskij žurnal = Izvestiya VUZ. Prikladnaja nelinejnaja dinamika = Applied nonlinear dynamics N2 - Topic and aim. Synchronization in populations of coupled oscillators can be characterized with order parameters that describe collective order in ensembles. A dependence of the order parameter on the coupling constants is well-known for coupled periodic oscillators. The goal of the study is to extend this analysis to ensembles of oscillators with chaotic phases, moreover with phases possessing hyperbolic chaos. Models and methods. Two models are studied in the paper. One is an abstract discrete-time map, composed with a hyperbolic Bernoulli transformation and with Kuramoto dynamics. Another model is a system of coupled continuous-time chaotic oscillators, where each individual oscillator has a hyperbolic attractor of Smale-Williams type. Results. The discrete-time model is studied with the Ott-Antonsen ansatz, which is shown to be invariant under the application of the Bernoulli map. The analysis of the resulting map for the order parameter shows, that the asynchronouis state is always stable, but the synchronous one becomes stable above a certain coupling strength. Numerical analysis of the continuous-time model reveals a complex sequence of transitions from an asynchronous state to a completely synchronous hyperbolic chaos, with intermediate stages that include regimes with periodic in time mean field, as well as with weakly and strongly irregular mean field variations. Discussion. Results demonstrate that synchronization of systems with hyperbolic chaos of phases is possible, although a rather strong coupling is required. The approach can be applied to other systems of interacting units with hyperbolic chaotic dynamics. N2 - Тема и цель. Синхронизация в популяциях связанных осцилляторов может быть охарактеризована параметрами порядка, описывающими коллективный порядок в ансамблях. Зависимость параметра порядка от коэффициентов связи хорошо известна для связанных периодических осцилляторов. Целью данного исследования является обобщение этого анализа на ансамбли осцилляторов с хаотическими фазами, а именно, с фазами, распределёнными на гиперболическом аттракторе. Модели и методы. В работе исследуются две модели. Первая – абстрактное отображение в дискретном времени, составленное из гиперболического преобразования Бернулли и динамики Курамото. Вторая – это система связанных хаотических осцилляторов в непрерывном времени, где каждый отдельный осциллятор имеет гиперболический аттрактор типа Смейла–Вильямса. Результаты. Модель в дискретном времени изучается с помощью подхода Отта–Антонсена, который, как показано, инвариантен при применении отображения Бернулли. Анализ полученного отображения по параметрам порядка показывает, что асинхронное состояние всегда устойчиво, а синхронное состояние становится устойчивым выше определенной силы связи. Численный анализ модели в непрерывном времени показывает сложную последовательность переходов из асинхронного состояния в полностью синхронный гиперболический хаос с промежуточными стадиями, которые включают режимы с периодическим во времени средним полем, а также со слабо и сильно нерегулярными вариациями среднего поля. Обсуждение. Результаты показывают, что синхронизация систем с гиперболическим фазовым хаосом возможна, хотя требуется довольно сильная связь. Данный подход может быть применен и к другим системам взаимодействующих звеньев с гиперболической хаотической динамикой. T2 - Синхронизация осцилляторов с гиперболическими хаотическими фазами KW - hyperbolic attractor KW - synchronization KW - collective dynamics KW - иперболический аттрактор KW - синхронизация KW - оллективная динамика Y1 - 2021 U6 - https://doi.org/10.18500/0869-6632-2021-29-1-78-87 SN - 0869-6632 SN - 2542-1905 VL - 29 IS - 1 SP - 78 EP - 87 PB - Saratov State University CY - Saratov ER - TY - GEN A1 - Clusella, Pau A1 - Politi, Antonio A1 - Rosenblum, Michael T1 - A minimal model of self-consistent partial synchrony T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 890 KW - synchronization KW - collective dynamics KW - coupled oscillators Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436266 SN - 1866-8372 IS - 890 ER - TY - JOUR A1 - Clusella, Pau A1 - Politi, Antonio A1 - Rosenblum, Michael T1 - A minimal model of self-consistent partial synchrony JF - NEW JOURNAL OF PHYSICS N2 - We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field. KW - synchronization KW - collective dynamics KW - coupled oscillators Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/9/093037 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER -