TY - GEN A1 - Al-Naji, Majd A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - New (and old) monomers from biorefineries to make polymer chemistry more sustainable T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1385 KW - biodegradable polymers KW - biorefineries KW - carbohydrate‐ based KW - monomers KW - green polymers KW - lignocellulosic biomass Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570614 SN - 1866-8372 IS - 3 ER - TY - JOUR A1 - Al-Naji, Majd A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - New (and old) monomers from biorefineries to make polymer chemistry more sustainable JF - Macromolecular rapid communications N2 - This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers. KW - biodegradable polymers KW - biorefineries KW - carbohydrate‐ based KW - monomers KW - green polymers KW - lignocellulosic biomass Y1 - 2020 U6 - https://doi.org/10.1002/marc.202000485 SN - 1022-1336 SN - 1521-3927 VL - 42 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schöne, Anne-Christin A1 - Roch, Toralf A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer techniques JF - Interface : journal of the Royal Society N2 - Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour. KW - Langmuir monolayer KW - biodegradable polymers KW - air - water interface KW - protein Langmuir layers Y1 - 2017 U6 - https://doi.org/10.1098/rsif.2016.1028 SN - 1742-5689 SN - 1742-5662 VL - 14 PB - Royal Society CY - London ER - TY - JOUR A1 - Hardy, John G. A1 - Torres-Rendon, Jose Guillermo A1 - Leal-Egana, Aldo A1 - Walther, Andreas A1 - Schlaad, Helmut A1 - Coelfen, Helmut A1 - Scheibel, Thomas R. T1 - Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering JF - Materials N2 - Materials based on biodegradable polyesters, such as poly(butylene terephthalate) (PBT) or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT), have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16)), that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering. KW - spider silk KW - recombinant protein KW - biodegradable polymers KW - biomaterials KW - biomineralization KW - bone tissue engineering Y1 - 2016 U6 - https://doi.org/10.3390/ma9070560 SN - 1996-1944 VL - 9 SP - 93 EP - 108 PB - MDPI CY - Basel ER - TY - GEN A1 - Hardy, John G. A1 - Torres-Rendon, Jose Guillermo A1 - Leal-Egaña, Aldo A1 - Walther, Andreas A1 - Schlaad, Helmut A1 - Cölfen, Helmut A1 - Scheibel, Thomas R. T1 - Biomineralization of engineered spider silk protein-based composite materials for bone tissue engineering N2 - Materials based on biodegradable polyesters, such as poly(butylene terephthalate) (PBT) or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT), have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16)), that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 359 KW - spider silk KW - recombinant protein KW - biodegradable polymers KW - biomaterials KW - biomineralization KW - bone tissue engineering Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400519 ER - TY - JOUR A1 - Yan, Wan A1 - Fang, Liang A1 - Nöchel, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Influence of deformation temperature on structural variation and shape-memory effect of a thermoplastic semi-crystalline multiblock copolymer JF - eXPRESS polymer letters N2 - A multiblock copolymer termed as PCL-PIBMD, consisting of crystallizable poly(epsilon-caprolactone) (PCL) segments and crystallizable poly(3S-isobutyl-morpholine-2,5-dione) (PIBMD) segments, has been reported as a material showing a thermally-induced shape-memory effect. While PIBMD crystalline domains act as netpoints to determine the permanent shape, both PCL crystalline domains and PIBMD amorphous domains, which have similar transition temperatures (T-trans) can act as switching domains. In this work, the influence of the deformation temperature (T-deform = 50 or 20 degrees C), which was above or below T-trans, on the structural changes of PCL-PIBMD during uniaxial deformation and the shapememory properties were investigated. Furthermore, the relative contribution of crystalline PCL and PIBMD amorphous phases to the fixation of the temporary shape were distinguished by a toluene vapor treatment approach. The results indicated that at 50 degrees C, both PCL and PIBMD amorphous phases can be orientated during deformation, resulting in thermally-induced crystals of PCL domains and joint contribution to the switching domains. In contrast at 20 degrees C, the temporary shape was mainly fixed by PCL crystals generated via strain-induced crystallization. KW - biodegradable polymers KW - shape-memory polymer KW - multiblock copolymer KW - polydepsipeptide Y1 - 2015 U6 - https://doi.org/10.3144/expresspolymlett.2015.58 SN - 1788-618X VL - 9 IS - 7 SP - 624 EP - 635 PB - Budapest University of Technology and Economics, Department of Polymer Engineering CY - Budapest ER -