TY - GEN A1 - Chechkin, Aleksei V. A1 - Zaid, Irwin M. A1 - Lomholt, Michael A. A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Bulk-mediated surface diffusion on a cylinder in the fast exchange limit T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 593 KW - Bulk-mediated diffusion; KW - anomalous diffusion KW - Levy flights KW - stochastic processes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415480 SN - 1866-8372 IS - 593 SP - 114 EP - 126 ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Zaid, I. M. A1 - Lomholt, M. A. A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Bulk-mediated surface diffusion on a cylinder in the fast exchange limit JF - Mathematical modelling of natural phenomena N2 - In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed. KW - Bulk-mediated diffusion KW - anomalous diffusion KW - Levy flights KW - stochastic processes Y1 - 2013 U6 - https://doi.org/10.1051/mmnp/20138208 SN - 0973-5348 VL - 8 IS - 2 SP - 114 EP - 126 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes N2 - We consider diffusion processes with a spatially varying diffusivity giving rise to anomalous diffusion. Such heterogeneous diffusion processes are analysed for the cases of exponential, power-law, and logarithmic dependencies of the diffusion coefficient on the particle position. Combining analytical approaches with stochastic simulations, we show that the functional form of the space-dependent diffusion coefficient and the initial conditions of the diffusing particles are vital for their statistical and ergodic properties. In all three cases a weak ergodicity breaking between the time and ensemble averaged mean squared displacements is observed. We also demonstrate a population splitting of the time averaged traces into fast and slow diffusers for the case of exponential variation of the diffusivity as well as a particle trapping in the case of the logarithmic diffusivity. Our analysis is complemented by the quantitative study of the space coverage, the diffusive spreading of the probability density, as well as the survival probability. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 236 KW - anomalous diffusion KW - disordered media KW - fractional dynamics KW - infection pathway KW - inhomogeneous-media KW - intracellular-transport KW - langevin equation KW - living cells KW - random-walks KW - single-particle tracking Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94468 SP - 20220 EP - 20235 ER -