TY - JOUR A1 - Frede, Katja A1 - Schreiner, Monika A1 - Baldermann, Susanne T1 - Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis N2 - Carotenoids as part of the photosystems are crucial for their assembly, light-harvesting, and photoprotection. Light of different wavelengths impacts the composition and structure of photosystems, thus offering the possibility to influence the carotenoid concentrations and composition in photosystems by illumination with specific narrow-banded light spectra. Key components involved in the regulation of gene transcription are still poorly characterized, particularly in leafy vegetables as compared to model plants. In particular, the effect of different light qualities and its connection to redox control mechanisms, which also determine the photosystem composition and structure, is not yet well understood. Furthermore, light quality effects are species-dependent, and thus, increase the need to perform research on individual vegetable species such as pak choi Brassica rapa ssp. chinensis. Here, we investigated the carotenoid concentrations and composition of pak choi sprouts grown for 6 days under blue, red, or white light emitting diodes (LEDs) as light source. After 6 days, the total carotenoid content was the highest under white and slightly reduced under blue or red LEDs. Blue, red, and white light differently affected the carotenoid composition mainly due to variations of the beta-carotene content which could be correlated to changes in the transcript levels of beta-carotene hydroxylase 1 (beta-OHASE1). Further investigations implied a redox controlled gene expression of beta-OHASE1. In addition, transcription factors related to light signaling and the circadian clock differed in their transcriptional abundance after exposure to blue and red light. RNA-Seq analysis also revealed increased transcript levels of genes encoding the outer antenna complex of photosystem II under red compared to blue light, indicating an adjustment of the photosystems to the different light qualities which possibly contributed to the alternations in the carotenoid content and composition. KW - Brassica rapa ssp. chinensis KW - beta-carotene hydroxylase KW - Carotenoids KW - LEDs KW - Light quality KW - Redox control Y1 - 2019 U6 - https://doi.org/10.1016/j.jphotobiol.2019.02.001 SN - 1011-1344 VL - 193 SP - 18 EP - 30 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Chen, Xiaomin A1 - Hanschen, Franziska S. A1 - Neugart, Susanne A1 - Schreiner, Monika A1 - Vargas, Sara A. A1 - Gutschmann, Björn A1 - Baldermann, Susanne T1 - Boiling and steaming induced changes in secondary metabolites in three different cultivars of pak choi (Brassica rapa subsp. chinensis) JF - Journal of Food Composition and Analysis N2 - Pak choi (Brassica rapa subsp. chinensis) is a leafy vegetable that is widely available in Asia and consumed in rising quantities in Europe. Pak choi contains high levels of secondary plant metabolites, such as carotenoids, chlorophylls, glucosinolates, phenolic compounds, and vitamin K, which are beneficial for humans if consumed on a regular basis. The evaluation of the genotype-induced variation of secondary plant metabolites revealed that the cultivar ‘Amur’ contained the highest concentration of secondary plant metabolites. Furthermore, steaming retained more chlorophylls, glucosinolates, phenolic acids and flavonoid compounds than boiling. In contrast, both domestic cooking methods – boiling, and steaming – reduced the formation of glucosinolate breakdown products, especially the undesired epithionitriles and nitriles but less of the health-beneficial isothiocyanates. KW - Pak choi KW - Secondary metabolites KW - Glucosinolates KW - Carotenoids KW - Chlorophylls KW - Flavonoids KW - Vitamin K KW - Domestic cooking Y1 - 2019 U6 - https://doi.org/10.1016/j.jfca.2019.06.004 SN - 0889-1575 SN - 1096-0481 VL - 82 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Neugart, Susanne A1 - Baldermann, Susanne A1 - Ngwene, Benard A1 - Wesonga, John A1 - Schreiner, Monika T1 - Indigenous leafy vegetables of Eastern Africa - A source of extraordinary secondary plant metabolites JF - Food research international N2 - Indigenous African leafy vegetables vary enormously in their secondary plant metabolites whereat genus and the species have a great impact. In African nightshade (Solanum scabrum), spiderplant (Cleome gynandra), amaranth (Amaranthus cruentus), cowpea (Vigna unguiculata), Ethiopian kale (Brassica carinata) and common kale (Brassica oleracea) the specific secondary metabolite profile was elucidated and gained detailed data about carotenoids, chlorophylls, glucosinolates and phenolic compounds all having an appropriate contribution to health beneficial properties of indigenous African leafy vegetables. Exemplarily, various quercetin glycosides such as quercetin-3-rutinoside occur in high concentrations in African nightshade, spiderplant, and amaranth between similar to 1400-3300 mu g/g DW. Additionally the extraordinary hydroxydnnamic acid derivatives such as glucaric isomers and isocitric acid isomers are found especially in amaranth (up to similar to 1250 mu g/g DW) and spiderplant (up to 120 mu g/g DW). Carotenoids concentrations are high in amaranth (up to 101.7 mu g/g DW) and spiderplants (up to 64.7 mu g/g DW) showing high concentrations of beta-carotene, the pro-vitamin A. In contrast to the ubiquitous occurring phenolics and carotenoids, glucosinolates are only present in the Brassicales species Ethiopian kale, common kale and spiderplant characterized by diverse glucosinolate profiles. Generally, the consumption of a variety of these indigenous African leafy vegetables can be recommended to contribute to different benefits such as antioxidant activity, increase pro-vitamin A and anticancerogenic compounds in a healthy diet. (C) 2017 Elsevier Ltd. All rights reserved. KW - Indigenous African leafy vegetables KW - Flavonoid glycosides KW - Hydroxycinnamic acids KW - Carotenoids KW - Glucosinolates Y1 - 2017 U6 - https://doi.org/10.1016/j.foodres.2017.02.014 SN - 0963-9969 SN - 1873-7145 VL - 100 SP - 411 EP - 422 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Witzel, Katja A1 - Strehmel, Nadine A1 - Baldermann, Susanne A1 - Neugart, Susanne A1 - Becker, Yvonne A1 - Becker, Matthias A1 - Berger, Beatrice A1 - Scheel, Dierk A1 - Grosch, Rita A1 - Schreiner, Monika A1 - Ruppel, Silke T1 - Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656(T) JF - Plant and soil N2 - Plant growth-promoting bacteria (PGPB) affect host physiological processes in various ways. This study aims at elucidating the dependence of bacterial-induced growth promotion on the plant genotype and characterizing plant metabolic adaptations to PGPB. Eighteen Arabidopsis thaliana accessions were inoculated with the PGPB strain Kosakonia radicincitans DSM 16656(T). Colonisation pattern was assessed by enhanced green fluorescent protein (eGFP)-tagged K. radicincitans in three A. thaliana accessions differing in their growth response. Metabolic impact of bacterial colonisation was determined for the best responding accession by profiling distinct classes of plant secondary metabolites and root exudates. Inoculation of 18 A. thaliana accessions resulted in a wide range of growth responses, from repression to enhancement. Testing the bacterial colonisation of three accessions did not reveal a differential pattern. Profiling of plant secondary metabolites showed a differential accumulation of glucosinolates, phenylpropanoids and carotenoids in roots. Analysis of root exudates demonstrated that primary and secondary metabolites were predominantly differentially depleted by bacterial inoculation. The plant genotype controls the bacterial growth promoting traits. Levels of lutein and beta-carotene were elevated in inoculated roots. Supplementing a bacterial suspension with beta-carotene increased bacterial growth, while this was not the case when lutein was applied, indicating that beta-carotene could be a positive regulator of plant growth promotion. KW - Arabidopsis KW - Carotenoids KW - Glucosinolates KW - Plant growth promoting bacteria KW - Phenylpropanoids KW - Root exudates Y1 - 2017 U6 - https://doi.org/10.1007/s11104-017-3371-1 SN - 0032-079X SN - 1573-5036 VL - 419 SP - 557 EP - 573 PB - Springer CY - Dordrecht ER -