TY - THES A1 - Kornhuber, Kai T1 - Rossby wave dynamics and changes in summertime weather extremes T1 - Rossby Wellendynamik und Veränderungen von Extremwetter im Sommer N2 - Extreme weather events like heatwaves and floods severely affect societies with impacts ranging from economic damages to losses in human lifes. Global warming caused by anthropogenic greenhouse gas emissions is expected to increase their frequency and intensity, particularly in the warm season. Next to these thermodynamic changes, climate change might also impact the large scale atmospheric circulation.Such dynamic changes might additionally act on the occurence of extreme weather events, but involved mechanisms are often highly non-linear. Therefore, large uncertainty exists on the exact nature of these changes and the related risks to society. Particularly in the densely populated mid-latitudes weather patterns are governed by the large scale circulation like the jet-streams and storm tracks. Extreme weather in this region is often related to persistent weather systems associated with a strongly meandering jet-stream. Such meanders are called Rossby waves. Under specific conditions they can become slow moving, stretched around the entire hemisphere and generate simultaneaous heat- and rainfall extremes in far-away regions. This thesis aims at enhancing the understanding of synoptic-scale, circumglobal Rossby waves and the associated risks of dynamical changes to society. More specific, the analyses investigate their relation to extreme weather, regions at risk, under which conditions they are generated, and the influence of anthropogenic climate change on those conditions now, in the past and in the future. I find that circumglobal Rossby waves promoted simultaneous occuring weather extremes across the northern hemisphere in several recent summers. Further, I present evidence that they are often linked to quasiresonant-amplification of planetary waves. These events include the 2003 European heatwave and the Moscow heatwave of 2010. This non-linear mechanism acts on the upper level flow through trapping and amplification of stationary synoptic scale waves. I show that this resonance mechanism acts in both hemispheres and is related to extreme weather. A main finding is that circumglobal Rossby waves primarily occur as two specific teleconnection patterns associated with a wave 5 and wave 7 pattern in the northern hemisphere, likely due to the favourable longitudinal distance of prominent mountain ridges here. Furthermore, I identify those regions which are particularly at risk: The central United States, western Europe and the Ukraine/Russian region. Moreover, I present evidence that the wave 7 pattern has and extreme weather in these regions. My results suggest that the increase in frequency can be linked to favourable changes in large scale temperature gradients, which I show to be largely underestimated by model simulations. Using surface temperature fingerprint as proxy for investigating historic and future model ensembles, evidence is presented that anthropogenic warming has likely increased the probability for the occurence of circumglobal Rossby waves. Further it is shown that this might lead to a doubling of such events until the end of the century under a high-emission scenario. Overall, this thesis establishes several atmosphere-dynamical pathways by which changes in large scale temperature gradients might link to persistent boreal summer weather. It highlights the societal risks associated with the increasing occurence of a newly discovered Rossby wave teleconnection pattern, which has the potential to cause simultaneaous heat-extremes in the mid-latitudinal bread-basket regions. In addition, it provides further evidence that the traditional picture by which quasi-stationary Rossby waves occur only in the low wavenumber regime, should be reconsidered. N2 - Extreme Wetterereignisse haben oft katastrophale Folgen für Menschen und Umwelt. Die zuletzt beobachtete Zunahme von Hitzewellen und Überschwemmungen im Sommer lässt sich zum Teil mit dem Klimawandel, verursacht durch den Ausstoß von Treibhausgasen aus fossilen Brennstoffen, erkären. Allerdings übetrafen einige Extremereignisse der jüngeren Vergangenheit in ihrer Intensität, das was allein durch die Erwärmung im globalen Mittel zu erwarten wäre. Der Klimawandel wirkt sich ebenfalls auf die atmosphärische Zirkulation, wie beispielsweise den Jetstream aus. Es wird hier vermutet, dass Änderungen in der Dynamik Extrem-Ereignisse verstärken, indem sie beispielsweise langanhaltender werden. Allerdings sind die entsprechenden Mechanismen komplex und stark nicht-linear, was die Unsicherheiten in Bezug auf zuünftige Risiken vergrößert. Ein Mechanismus der mit extremen Wetter in den mittleren Breiten in Verbindung gebracht wurde, ist ein stark mäandernder Jet-Stream. Dieser führt zu ungewöhnlichen Temperaturen in den mittleren Breiten weile dies Mänder, genannt Rossby-Wellen, den Transport von ungewöhnlich warmer beziehungsweise kalter Luft entlang der Breiten erlauben. Unter bestimmten Bedingungen erstrecken sich diese Rossby Wellen über die gesamte Hemisphäre und führen zum synchronen auftreten von Wetterextremen entlang den mittleren Breiten. Extreme treten insbesondere dann auf wenn sie lang über bestimmten Regionen verharren. Diese Dissertation erforscht den Zusammenhang dieser quasi-stationären Rossby-Wellen und Wetter-Extremen: In welchem Maße können diese durch Rossby-Wellen erklärt werden, welche Regionen sind besonders betroffen und welchen Bedingungen sind für ihr Entstehen förderlich und wie wirkt sich der Klimawandel auf diese Bedingungen aus? Ich zeige, dass einige der verheerendsten Wetterextreme der jüngeren Vergangenheit durch hemisphärische Rossby-Wellenmuster erzeugt wurden und dass diese zumeist synchron mit anderen ungewöhnlichen Wettersituationen in den mittleren Breiten auftraten. Desweiteren zeige ich, dass einige dieser Ereignisse mit dem resonanten Aufschaukeln einiger Wellenkomponenten erklärt werden könnnen (engl. Quasi-resonant Amplification of Planetary Waves, kurz: QRA). Diesem nicht-linearen Mechanismus zufolge verhindert ein starker Jet, dass bestimmte Wellen ihre Energie in Richung Äquator oder Pol verlieren und so förmlich in den mittleren Breiten gefangen werden. Diese Wellen können dann resonant mit dem stationären thermischen und orographischen Störungen interagieren und gewinnen so an Intensität. Ich zeige, dass dieser Mechanismus sowohl in der Nord- als auch in der Südhemisphäre wirkt. Desweiteren zeige ich, dass die Rossby-Wellen in der Nordhemisphäre als zwei wiederkehrende örtlich festgelegte Wellenmuster, charakterisiert durch Welle 5 und Welle 7, auftreten. Dies erkläre ich mit dem relativen Abstand markanter Gebirgskämme entlang der Längengrade in den mittleren Breiten. Dieses Ergebnis ermöglicht es jene Regionen zu identifizieren, welche während solcher Ereignisse besonders gefährdet sind: das Zentrum der USA, Westeuropa und die Region Ukraine / Russland. Ich zeige, dass das Welle-7-Muster in den letzten Jahrzehnten in seiner Häufigkeit zugenommen hat, was die beobachtete Zunahme von extremen Wetter in diesen Regionen erklären könnte. Diese Zunahme führe ich auf die Veränderungen der groß-skaligen Temperaturgradienten entlang der Längen und Breitengrade zurück. Ich zeige zudem, dass diese Veränderungen durch Modelle weitestgehend unterschätzt werden. Über ein charakteristisches Temperaturprofil als Proxy untersuchen wir Modeldaten von historische und Projektionen. Diese Analyse zeigt, dass die anthropogene Erwärmung mit einiger Wahrscheinlichkeit die Bedingungen für die erzeugung solcher Rossby-Wellen verändert hat. Desweiteren kommt es unter der Annahme ungestoppter Emissionen vermutlich zu einer Verdopplung dieser Ereignisse führen zum Ende des Jahrhunderts. In dieser Dissertation zeige ich auf wie die Veränderung großskaliger Oberflächen-Temperatur-Gradienten mit dem vermehrten Aufkommen langanhaltender und oft extremen Wetterereignisse zusammenhängt. Ich indentifiziere die Regionen, die durch das Welle 7 Muster besonders gefärdet sind. Desweiteren, geben meine Ergebnisse weitere Hinweise darauf, dass die traditionell Sicht, aus der quasi-stationäre-Rossby-Wellen nur in Form von niedrigen Wellenzahlen vorkommen, überdacht werden muss. KW - Telekonnektionen KW - Atmosphärendynamik KW - Jetstream KW - Klimawandel KW - Hitzewellen KW - teleconnections KW - atmosphere dynamics KW - jet stream KW - climate change KW - heatwaves Y1 - 2017 ER - TY - THES A1 - Sempf, Mario T1 - Nichtlineare Dynamik atmosphärischer Zirkulationsregime in einem idealisierten Modell T1 - Nonlinear dynamics of atmospheric circulation regimes in an idealized model N2 - Unter atmosphärischen Zirkulationsregimen versteht man bevorzugte quasi-stationäre Zustände der atmosphärischen Zirkulation auf der planetaren Skala, die für eine bis mehrere Wochen persistieren können. Klimaänderungen, ob natürlich entstanden oder anthropogen verursacht, äußern sich in erster Linie durch Änderungen der Auftrittswahrscheinlichkeiten der natürlichen Regime. In der vorliegenden Arbeit wurden dynamische Mechanismen des Regimeverhaltens und der dekadischen Klimavariabilität der Atmosphäre bei Abwesenheit zeitlich veränderlicher externer Einflussfaktoren untersucht. Das Hauptwerkzeug dafür war ein quasi-geostrophisches Dreischichtenmodell der winterlichen atmosphärischen Zirkulation auf der Nordhemisphäre, das eine spektrale T21-Auflösung, einen orographischen und einen zeitlich konstanten thermischen Antrieb mit nicht-zonalen Anteilen besitzt. Ein solches Modell vermag großskalige atmosphärische Strömungsvorgänge außerhalb der Tropen mit einiger Genauigkeit zu simulieren. Nicht berücksichtigt werden Feuchteprozesse, die Wechselwirkung der Atmosphäre mit anderen Teilen des Klimasystems sowie anthropogene Einflüsse. Für das Dreischichtenmodell wurde ein automatisiertes, iteratives Verfahren zur Anpassung des thermischen Modellantriebs neu entwickelt. Jede Iteration des Verfahrens besteht aus einer Testintegration des Modells, ihrer Auswertung, dem Vergleich der Ergebnisse mit den NCEP-NCAR-Reanalysedaten aus den Wintermonaten Dezember, Januar und Februar sowie einer auf diesem Vergleich basierenden Antriebskorrektur. Nach Konvergenz des Verfahrens stimmt das Modell sowohl bezüglich des zonal gemittelten Klimazustandes als auch bezüglich der zeitgemittelten nicht-zonalen außertropischen diabatischen Erwärmung nahezu perfekt mit den wintergemittelten Reanalysedaten überein. In einer 1000-jährigen Simulation wurden die beobachtete mittlere Zirkulation im Winter sowie ihre Variabilität realitätsnah reproduziert, insbesondere die Arktische Oszillation (AO) und ihre vertikale Ausdehnung. Der AO-Index des Modells weist deutliche dekadische Schwankungen auf, die allein durch die interne Modelldynamik bedingt sind. Darüber hinaus zeigt das Modell ein Regimeverhalten, das gut mit den Beobachtungsdaten übereintimmt. Es besitzt ein Regime, das in etwa der negativen Phase der Nordatlantischen Oszillation (NAO) entspricht und eines, das der positiven Phase der AO ähnelt. Eine weit verbreitete Hypothese ist die näherungsweise Übereinstimmung zwischen Regimen und stationären Lösungen der Bewegungsgleichungen. In der vorliegenden Arbeit wurde diese Hypothese für das Dreischichtenmodell überprüft, mit negativem Resultat. Es wurden mittels eines Funktionalminimierungsverfahrens sechs verschiedene stationäre Zustände gefunden. Diese sind allesamt durch eine äußerst unrealistische Zirkulation gekennzeichnet und sind daher weit vom Modellattraktor entfernt. Fünf der sechs Zustände zeichnen sich durch einen extrem starken subtropischen Jet in der mittleren und obereren Modellschicht aus. Da die Ursache des Regimeverhaltens des Dreischichtenmodells nach wie vor unklar war, wurde auf ein einfacheres Modell, nämlich ein barotropes Modell mit T21-Auflösung zurückgegriffen. Für die Anpassung des Oberflächenantriebs wurde eine modifizierte Form der iterativen Prozedur verwendet. Die zeitgemittelte Zirkulation des barotropen Modells stimmt sehr gut mit der zeitlich und vertikal gemittelten Zirkulation des Dreischichtenmodells überein. Das dominierende räumliche Muster der Variabilität besitzt eine AO-ähnliche Struktur. Zudem besitzt das barotrope Modell zwei Regime, die näherungsweise der positiven und negativen Phase der AO entsprechen und somit auch den Regimen des Dreischichtenmodells ähneln. Im Verlauf der Justierung des Oberflächenantriebs konnte beobachtet werden, dass die zwei Regime des barotropen Modells durch die Vereinigung zweier koexistierender Attraktoren entstanden. Der wahrscheinliche Mechanismus der Attraktorvereinigung ist eine Randkrise eines der beiden Attraktoren, gefolgt von einer explosiven Bifurkation des anderen Attraktors. Es wird die Hypothese aufgestellt, dass der beim barotropen Modell vorgefundene Mechanismus der Regimeentstehung für atmosphärische Zirkulationsmodelle mit realitätsnahem Regimeverhalten Allgemeingültigkeit besitzt. Gestützt wird die Hypothese durch vier Experimente mit dem Dreischichtenmodell, bei denen jeweils der Parameter der Bodenreibung verringert und die Antriebsanpassung wiederholt wurde. Bei diesen Experimenten erhöhte sich die Persistenz und die Separiertheit der Regime bei abnehmender Reibung drastisch und damit auch der Anteil dekadischer Zeitskalen an der Variabilität. Die Zunahme der Persistenz der Regime ist charakteristisch für die Annäherung an eine inverse innere Krise, deren Existenz aber nicht nachgewiesen werden konnte. N2 - Preferred quasi-stationary states of the planetary-scale atmospheric circulation, which may persist for one or several weeks, are referred to as atmospheric circulation regimes. Climate variations, either natural or anthropogenic, manifest themselves mainly in changes of the frequencies of occurrence of the natural regimes. In the presented work, dynamical mechanisms of regime behavior and decadal climate variability of the atmosphere in absence of time-varying external forcing factors have been examined using a quasi-geostrophic three-level model of the wintertime atmospheric circulation over the northern hemisphere. This model has spectral T21 resolution, an orographic and a time-constant thermal forcing including non-zonal components. Such kind of a model is able to simulate large-scale extratropical atmospheric processes with reasonable accuracy. However, moisture processes, the interaction between the atmosphere and other parts of the climate system, and anthropogenic influences are not accounted for. For the three-level model, a novel, automated, iterative procedure for the tuning of the thermal forcing has been developed. Every iteration of the procedure consists of a model test run, its evaluation, the comparison of the results with NCEP-NCAR reanalysis data for the winter months December, January, and February, and a forcing correction based on this comparison. After convergence of the procedure, the model matches the reanalysis data almost perfectly, as far as it concerns the zonal mean climate state and the time-mean non-zonal extratropical diabatic heating. In a 1000-year simulation, the observed time-mean circulation in winter as well as its variability have been reproduced with considerable realism, in particular the Arctic Oscillation (AO) and its deep vertical extent. The modeled AO index exhibits pronounced decadal variations, exclusively caused by internal model dynamics. Furthermore, the model's regime behavior is in good agreement with observations. It possesses one regime resembling the negative phase of the North Atlantic Oscillation (NAO) and another resembling the positive phase of the AO. A well-known hypothesis is the approximate correspondence between regimes and stationary solutions of the equations of motion. In the presented work, this hypothesis has been checked for the three-level model, but with negative result. Using a functional minimization method, six steady states have been found. All of them correspond to an extremely unrealistic circulation, and thus they are far away from the model's attractor. Five of the six steady states are characterized by a strongly exaggerated subtropical jet in the middle and upper model level. As the origin of regime behavior was still unclear, a simpler model, namely a T21 barotropic model, has been reverted to. For the adaptation of the surface forcing, a modified version of the tuning procedure has been applied. The time-mean circulation of the barotropic model matches the temporally and vertically averaged circulation of the three-level model very well. The dominant spatial pattern of variability has an AO-like structure. Furthermore, the barotropic model possesses two regimes which approximately correspond to the positive and negative AO phase and therefore resemble the regimes of the three-level model. During the tuning of the surface forcing it has been observed that the two regimes of the barotropic model have emerged from the unification of two coexisting attractors. The mechanism responsible for this attractor merging is probably a boundary crisis of one of these attractors, followed by an explosive bifurcation of the other attractor. It is hypothesized that the mechanism of regime genesis found in the barotropic model is universally valid for atmospheric circulation models with realistic regime behavior. This hypothesis is supported by four experiments with the three-level model, where the surface friction parameter has been decreased and the tuning procedure has been repeated, respectively. In these experiments, the persistence and separation of the regimes increases dramatically with decreasing friction, and thereby the fraction of decadal-scale variability. The increase of regime persistence is characteristic of approaching an inverse interior crisis, the existence of which, however, could not be proven. KW - Nichtlineare Dynamik KW - Modellierung KW - Atmosphärendynamik KW - Zirkulationsregime KW - dekadische Klimavariabilität KW - quasi-geostropisches Modell KW - atmospheric dynamics KW - circulation regimes KW - decadal climate variability KW - quasi-geostrophic model Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5989 ER -