TY - JOUR A1 - Sokol, Krzysztof A1 - Halama, Ralf A1 - Meliksetian, Khachatur A1 - Savov, Ivan P. A1 - Navasardyan, Gevorg A1 - Sudo, Masafumi T1 - Alkaline magmas in zones of continental convergence BT - the Tezhsar volcano-intrusive ring complex, Armenia JF - Lithos : an international journal of mineralogy, petrology, and geochemistry N2 - Alkaline igneous rocks are relatively rare in settings of tectonic convergence and little is known about their petrogenesis in these settings. This study aims to contribute to a better understanding of the formation of alkaline igneous rocks by an investigation of the Tezhsar volcano-intrusive alkaline ring complex (TAC) in the Armenian Lesser Caucasus, which is located between the converging Eurasian and Arabian plates. We present new petrological, geochemical and Sr Nd isotope data for the TAC to constrain magma genesis and magma source characteristics. Moreover, we provide a new Ar-40/Ar-39 age of 41.0 +/- 0.5 Ma on amphibole from a nepheline syenite that is integrated into the regional context of ongoing regional convergence and widespread magmatism. The TAC is spatially concentric and measures similar to 10 km in diameter representing the relatively shallow plumbing system of a major stratovolcano juxtaposed by ring faulting with its extrusive products. The plutonic units comprise syenites and nepheline syenites, whereas the extrusive units are dominated by trachytic-phonolitic rocks. The characteristic feature of the TAC is the development of pseudomorphs after leucite in all types of the volcanic, subvolcanic and intrusive alkaline rocks. Whole-rock major element data show a metaluminous (Alkalinity Index = 0-0.1), alkalic and silica-undersaturated (Feldspathoid Silica-Saturation Index <0) character of the TAC. The general trace element enrichment and strong fractionation of REEs (La-N/Yb-N up to 70) indicate a relatively enriched magma source and small degrees of partial melting. All TAC rocks show a negative Nb Ta anomalies typical of subduction zone settings. The initial 87Sr/85Sr ratios (0.704-0.705) and positive sNd values (+3 to +5) indicate an isotopically depleted upper mantle and lack of significant crustal influence, which in turn suggests the TAC magma has formed via differentiation from lithospheric mantle melts. KW - Alkaline igneous rocks KW - Ring complex KW - Armenia KW - Geochemistry KW - Ar-40/Ar-39 dating KW - Pseudoleucite Y1 - 2018 U6 - https://doi.org/10.1016/j.lithos.2018.08.028 SN - 0024-4937 SN - 1872-6143 VL - 320 SP - 172 EP - 191 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lepetit, Petra A1 - Viereck, Lothar A1 - Piper, John D. A. A1 - Sudo, Masafumi A1 - Gurel, Ali A1 - Copuroglu, Ibrahim A1 - Gruber, Manuela A1 - Mayer, Bernhard A1 - Koch, Michael A1 - Tatar, Orhan A1 - Gursoy, Halil T1 - Ar-40/Ar-39 dating of ignimbrites and plinian air-fall layers from Cappadocia, Central Turkey: Implications to chronostratigraphic and Eastern Mediterranean palaeoenvironmental record JF - Chemie der Erde : interdisciplinary journal for chemical problems of the geo-sciences and geo-ecology N2 - Magmatism forming the Central Anatolian Volcanic Province of Cappadocia, central Turkey, records the last phase of Neotethyan subduction after similar to 11 Ma. Thirteen large calc-alkaline ignimbrite sheets form marker bands within the volcano-sedimentary succession (the Urgup Formation) and provide a robust chronostratigraphy for paleoecologic evaluation of the interleaved paleosols. This paper evaluates the chronologic record in the context of the radiometric, magnetostratigraphic and lithostratigraphic controls. Previous inconsistencies relating primarily to K/Ar evidence were reason for the initiation of an integrated study which includes Ar-40/Ar-39 dating, palaeomagnetic and stratigraphic evidence. The newly determined Ar-40/Ar-39-ages (Lepetit, 2010) are in agreement with Ar/Ar and U/Pb data meanwhile published by Pauquette and Le Pennec (2012) and Aydar et al. (2012). The Ar-40/Ar-39-ages restrict the end of the Urgup Formation to the late Miocene. The paleosol sequence enclosed by the ignimbrites is thus restricted to the late Miocene, the most intense formation of pedogene calcretes correlating with the Messinian Salinity Crisis. KW - Ar-40/Ar-39 dating KW - Tephrostratigraphy KW - Neogene KW - Cappadocia KW - Turkey Y1 - 2014 U6 - https://doi.org/10.1016/j.chemer.2014.05.001 SN - 0009-2819 SN - 1611-5864 VL - 74 IS - 3 SP - 471 EP - 488 PB - Elsevier CY - Jena ER -