TY - JOUR A1 - Risse, Sarah A1 - Hohenstein, Sven A1 - Kliegl, Reinhold A1 - Engbert, Ralf T1 - A theoretical analysis of the perceptual span based on SWIFT simulations of the n+2 boundary paradigm JF - Visual cognition N2 - Eye-movement experiments suggest that the perceptual span during reading is larger than the fixated word, asymmetric around the fixation position, and shrinks in size contingent on the foveal processing load. We used the SWIFT model of eye-movement control during reading to test these hypotheses and their implications under the assumption of graded parallel processing of all words inside the perceptual span. Specifically, we simulated reading in the boundary paradigm and analysed the effects of denying the model to have valid preview of a parafoveal word n + 2 two words to the right of fixation. Optimizing the model parameters for the valid preview condition only, we obtained span parameters with remarkably realistic estimates conforming to the empirical findings on the size of the perceptual span. More importantly, the SWIFT model generated parafoveal processing up to word n + 2 without fitting the model to such preview effects. Our results suggest that asymmetry and dynamic modulation are plausible properties of the perceptual span in a parallel word-processing model such as SWIFT. Moreover, they seem to guide the flexible distribution of processing resources during reading between foveal and parafoveal words. KW - Eye movements KW - Reading KW - Computational modelling KW - Perceptual span KW - Preview Y1 - 2014 U6 - https://doi.org/10.1080/13506285.2014.881444 SN - 1350-6285 SN - 1464-0716 VL - 22 IS - 3-4 SP - 283 EP - 308 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Yan, Ming A1 - Pan, Jinger A1 - Laubrock, Jochen A1 - Kliegl, Reinhold A1 - Shu, Hua T1 - Parafoveal processing efficiency in rapid automatized naming a comparison between Chinese normal and dyslexic children JF - Journal of experimental child psychology N2 - Dyslexic children are known to be slower than normal readers in rapid automatized naming (RAN). This suggests that dyslexics encounter local processing difficulties, which presumably induce a narrower perceptual span. Consequently, dyslexics should suffer less than normal readers from removing parafoveal preview. Here we used a gaze-contingent moving window paradigm in a RAN task to experimentally test this prediction. Results indicate that dyslexics extract less parafoveal information than control children. We propose that more attentional resources are recruited to the foveal processing because of dyslexics' less automatized translation of visual symbols into phonological output, thereby causing a reduction of the perceptual span. This in turn leads to less efficient preactivation of parafoveal information and, hence, more difficulty in processing the next foveal item. KW - Dyslexia KW - Eye movement KW - Perceptual span KW - Rapid automatized naming KW - Parafoveal processing KW - Linear mixed model Y1 - 2013 U6 - https://doi.org/10.1016/j.jecp.2013.01.007 SN - 0022-0965 VL - 115 IS - 3 SP - 579 EP - 589 PB - Elsevier CY - San Diego ER -