TY - JOUR A1 - Powali, Debarchan A1 - Sharma, Shubham A1 - Mandal, Riddhi A1 - Mitra, Supriyo T1 - A reappraisal of the 2005 Kashmir (M-w 7.6) earthquake and its aftershocks BT - seismotectonics of NW Himalaya JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - We study the source properties of the 2005 Kashmir earthquake and its aftershocks to unravel the seismotectonics of the NW Himalayan syntaxis. The mainshock and larger aftershocks have been simultaneously relocated using phase data. We use back-projection of high-frequency energy from multiple teleseismic arrays to model the spatio-temporal evolution of the mainshock rupture. Our analysis reveal a bilateral rupture, which initially propagated SE and then NW of the epicenter, with an average rupture velocity of similar to 2 km s(-1). The area of maximum energy release is parallel to and bound by the surface rupture. Incorporating rupture propagation and velocity, we model the mainshock as a line source using P- and SH-waveform inversion. Our result confirms that the mainshock occurred on a NE dipping (similar to 35 degrees) fault plane, with centroid depth of similar to 10 km. Integrated source time function show that majority of the energy was released in the first similar to 20 s, and was confined above the hypocenter. From waveform inverted fault dimension and seismic moment, we argue that the mainshock had an additional similar to 25 km blind rupture beyond the NW Himalayan syntaxis. Combining this with findings from previous studies, we conjecture that the blind rupture propagated NW of the syntaxis underneath a weak detachment overlain by infra-Cambrian salt layer, and terminated in a wedge thrust. All moderate-to-large aftershocks, NW of the mainshock rupture, are concentrated at the edge of the blind rupture termination. Source modeling of these aftershocks reveal thrust mechanism with centroid depths of 2-10 km, and fault planes oriented subparallel to the mainshock rupture. To study the influence of mainshock rupture on aftershock occurrence, we compute Coulomb failure stress on aftershock faults. All these aftershocks lie in the positive Coulomb stress change region. This suggest that the aftershocks have been triggered by either co-seismic or post-seismic slip on the mainshock fault. KW - Kashmir earthquake KW - Aftershocks KW - High frequency back-projection KW - Source KW - mechanism KW - Coulomb failure stress KW - Seismo-tectonics Y1 - 2020 U6 - https://doi.org/10.1016/j.tecto.2020.228501 SN - 0040-1951 SN - 1879-3266 VL - 789 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ziegler, Moritz O. A1 - Reiter, Karsten A1 - Heidbach, Oliver A1 - Zang, Arno A1 - Kwiatek, Grzegorz A1 - Stromeyer, Dietrich A1 - Dahm, Torsten A1 - Dresen, Georg A1 - Hofmann, Gerhard T1 - Mining-Induced Stress Transfer and Its Relation to a 1.9 Seismic Event in an Ultra-deep South African Gold Mine JF - Pure and applied geophysics N2 - On 27 December 2007, a 1.9 seismic event occurred within a dyke in the deep-level Mponeng Gold Mine, South Africa. From the seismological network of the mine and the one from the Japanese-German Underground Acoustic Emission Research in South Africa (JAGUARS) group, the hypocentral depth (3,509 m), focal mechanism and aftershock location were estimated. Since no mining activity took place in the days before the event, dynamic triggering due to blasting can be ruled out as the cause. To investigate the hypothesis that stress transfer, due to excavation of the gold reef, induced the event, we set up a small-scale high-resolution three-dimensional (3D) geomechanical numerical model. The model consisted of the four different rock units present in the mine: quartzite (footwall), hard lava (hanging wall), conglomerate (gold reef) and diorite (dykes). The numerical solution was computed using a finite-element method with a discretised mesh of approximately elements. The initial stress state of the model is in agreement with in situ data from a neighbouring mine, and the step-wise excavation was simulated by mass removal from the gold reef. The resulting 3D stress tensor and its changes due to mining were analysed based on the Coulomb failure stress changes on the fault plane of the event. The results show that the seismic event was induced regardless of how the Coulomb failure stress changes were calculated and of the uncertainties in the fault plane solution. We also used the model to assess the seismic hazard due to the excavation towards the dyke. The resulting curve of stress changes shows a significant increase in the last in front of the dyke, indicating that small changes in the mining progress towards the dyke have a substantial impact on the stress transfer. KW - Induced seismicity KW - static stress change KW - deep-level mining KW - tabular mining KW - Coulomb failure stress KW - 3D geomechanical numerical model Y1 - 2015 U6 - https://doi.org/10.1007/s00024-015-1033-x SN - 0033-4553 SN - 1420-9136 VL - 172 IS - 10 SP - 2557 EP - 2570 PB - Springer CY - Basel ER -