TY - THES A1 - Schmidt, Ruth Maria T1 - Signalkaskaden und Steuermechanismen in den Speicheldrüsen von Dipteren T1 - Signalling pathways and control mechanisms in the salivary glands of Diptera N2 - Flüssigkeitssekretion und Proteinsekretion werden in Speicheldrüsen von Insekten über Hormone und Neurotransmitter gesteuert. Diese entfalten ihre physiologische Wirkung in den sekretorischen Drüsenzellen hauptsächlich über den zyklischen Adenosinmonophosphat (cAMP)-Signalweg und den Inositoltrisphosphat (IP3) / Ca2+-Signalweg. Die Mechanismen möglicher Wechselwirkungen zwischen diesen Signalwegen und ihre physiologischen Auswirkungen sind unzureichend bekannt. Im Mittelpunkt dieser Arbeit stand die Frage, ob und wie sich der Ca2+-Signalweg und der cAMP-Signalweg in der Speicheldrüse der Diptere Calliphora vicina beeinflussen. Substanzen wie 5-Fluoro-α-Methyltryptamin und Histamin wurden in früheren Arbei-ten als Agonisten genutzt, um in den Speicheldrüsen von C. vicina selektiv den cAMP-Signalweg (getrennt vom IP3/Ca2+-Signalweg) zu aktivieren. Es zeigte sich in transepithelialen Potentialmessungen und mikrofluorometrischen Ca2+-Untersuchungen, dass beide Substanzen sowohl den cAMP-Weg als auch den Ca2+-Signalweg aktivierten. Die physiologischen Ursachen der Histamin-induzierten Ca2+-Erhöhung wurden genauer untersucht. Zusammengefasst zeigten diese Untersuchungen, dass Histamin wie 5-HT den cAMP-Weg und die Phosphoinositidkaskade aktivierte. Im Gegensatz zu den 5-HT-induzierten Ca2+-Oszillationen, welche durch interzelluläre Ca2+-Wellen synchronisiert werden, verursachte Histamin bei niedrigen Konzentrationen lokale Ca2+-Oszillationen in einzelnen Zellen (keine Wellen). Bei höheren Histamin-Konzentrationen war eine anhaltende Ca2+-Erhöhung oder ein synchrones Ca2+-beating in der gesamten Drüse zu beobachten. Des Weiteren wurde die Frage untersucht, ob eine Erhöhung der intrazellulären cAMP-Konzentration den IP3 Ca2+-Signalweg in den Epithelzellen der Speicheldrüse beeinflussen kann. Es zeigte sich, dass cAMP den durch schwellennahe 5-HT-Konzentrationen induzierten Ca2+-Anstieg verstärkte. Diese Verstärkung wurde durch eine PKA-vermittelte Sensitivierung des IP3-Rezeptor/Ca2+-Kanals für IP3 verursacht. Immunzytochemische Untersuchungen deuten dar-auf hin, dass die Proteinkinase A eng mit dem IP3-Rezeptor/Ca2+-Kanal assoziiert ist. Diese Messungen zeigen erstmals, dass auch bei Invertebraten der Botenstoff cAMP, PKA-vermittelt, den IP3-Rezeptor/Ca2+-Kanal des ER für IP3 sensitiviert. N2 - Fluid- and protein-secretion in the salivary glands of insects are controlled by hormones or neurotransmitters. These agonists activate two signalling cascades: the cAMP-pathway and the IP>sub>3/Ca-pathway. The functional crosstalk between these two signalling pathways is poorly understood. Functional crosstalk between cAMP-pathway and IP3/Ca2+-pathway was investigated in the salivary glands of the blowfly, Calliphora vicina. Histamine and 5-alpha-methyltryptamine were used in an attempt to activate the cAMP-pathway selectively, as suggested previously. By using transepithelial potential-measurements and microfluorometric Ca2+-imaging it was demonstrated that both substances activate the cAMP- and the IP3/Ca2+-pathway. The physiological effects of histamine were investigated in detail. These experiments show that histamine causes an intracellular Ca2+-elevation that, in some preparations exhibits oscillations with concentration-dependent frequencies. In contrast to 5-HT induced intracellular Ca2+-oscillations and propagating intercellular Ca2+-waves histamine produces local Ca2+-oscillations in single cells or synchronous Ca2+-beating in the whole gland. In addition the effects of increasing cAMP on the IP3/Ca2+-pathway in the salivary glands of the blowfly were studied. It could be demonstrated that cAMP augments the 5-HT-induced Ca2+-increase in glands stimulated with low doses of 5-HT. This potentiation is the result of a PKA-mediated sensitisation of the IP3-receptor/Ca2+-channel for IP3. Results of immunocytochemical analyses show that the PKA is spatially associated with the ER. These results show for the first time that in invertebrates as well as in vertebrates the second messenger cAMP sensitises the IP3-receptor/Ca2+-channel for IP3 by the action of a PKA. KW - Speichel KW - Speicheldrüse KW - Insekten KW - Calcium-Imaging KW - transepitheliales Potential KW - Signalkakaden KW - IP3 KW - cAMP KW - PKA KW - IP3-Rezeptor KW - salivary gland KW - blowfly KW - signalling pathways KW - IP3 KW - cyclic AMP KW - IP3-receptor Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7714 ER - TY - THES A1 - Sureshkumar, Priyavathi T1 - Erweiterung der zellbasierten Calcium-Imaging-Methode im eukaryotischen zellfreien Proteinsynthese-System für die transient-receptor-potential (TRP) - Ionenkanäle N2 - Die Fluoreszenz-Calcium-Imaging-Methode wird auch heute noch als gängige Methode verwendet, vor allem wegen der geringeren Kosten für das Wirkstoffscreening in der pharmazeutischen Forschung, wobei Ionenkanäle sowie einige der G-Protein gekoppelte Rezeptoren (GPCRs) die Mehrzahl der Wirkstoffziele ansprechen. Die zellfreie Synthese eukaryotischer Proteine hat nicht die Nachteile, die bei der Überexpression dieser ionenpermeablen Proteine in Zellen auftreten können, wie z. B. Zelltoxizität, geringere Proteinexpression und die Beseitigung der exprimierten Proteine aufgrund veränderter Domänen sowie die zeitaufwändige Pflege von Zelllinien. Die Synthese von Ionenkanälen in zellfreien Proteinsyntheseplattformen für das künftige Wirkstoffscreening ist noch in der Grundlagenforschung. Obwohl die Fluoreszenz-Calcium-Imaging-Methode in zellbasierten Assays weit verbreitet ist, wurde diese Methode bisher noch nicht in zellfreien Proteinexpressionssystemen verwendet. Insgesamt ist die neue Anwendung der Calcium-Imaging-Methode in eukaryontischen zellfreien Systemen eine Voraussetzung für die schnelle pharmakologische Analyse von Wirkstoffen. Das erste Ziel dieser wissenschaftlichen Arbeit bestand darin, die grundlegenden Prinzipien der Calcium-Imaging-Methode zur Untersuchung von Ionenkanälen in zellbasierten Systemen zu untersuchen. Hierfür wurden zwei Tumorzelllinien des Auges verwendet, und zwar benigne Pterygiumzellen und maligne Aderhautmelanom 92.1 Zellen. In diesen Studien wurde die Interaktion zwischen den nativ überexprimierten transient-receptor-potential-Ionenkanälen (TRPs) wie TRP Vanilliod 1 (TRPV1) (Capsaicinrezeptor) und TRP Melastatin 8 (TRPM8) (Mentholrezeptor) in diesen Tumorzellen nach Zugabe von verschiedenen Medikamenten und Hormonen untersucht. Das zweite Ziel dieser Arbeit war es, den Calcium-Mechanismus von GPCRs in den Zellen zu untersuchen. Zu diesem Zweck wurde Mas, ein GPCR und Angiotensin (1-7) -Hormonrezeptor, aus dem renin-angiotensin-aldosteron-system (RAAS) in der Human Embryonic Kidney-293 (HEK293) Zelllinie überexprimiert. In dieser Studie wurden insbesondere die Aktivierung klassischer GPCR-Signalwege wie Phospholipase C und Proteinkinase C durch Angiotensin-(1-7) über Mas und die Beteiligung von TRP-Kanälen nachgewiesen. Die zellbasierte-Calcium-Imaging-Methode für chemische Calcium-Indikatoren ließ sich aufgrund der Anwesenheit einer großen Menge cytosolischer Carboxylesterasen gut anwenden. Carboxylesterase ist das wichtigste Enzym in der Calcium Imaging Methode, das die Verarbeitung chemischen Calcium-Farbstoffe behandelt. Dieses Enzym fehlt jedoch in Mikrosomen, die als Basismembran für die Integration synthetisierter Ionenkanäle in eukaryontischen zellfreien Systemen verwendet werden. Das dritte Ziel dieser Forschungsarbeit war die Umsetzung der zellbasierten Calcium-Imaging Methode und der Calcium-Signalwege in zellfreie Systeme. Hier wurde die zellfrei synthetisierte Carboxylesterase in Mikrosomen von Spodoptera frugiperda (Sf21) als praktikables Calcium-Imaging-Werkzeug etabliert, um sowohl native ionenpermeable Proteine als auch zellfrei-synthetisierte Ionenkanäle zu untersuchen. Die Enzymaktivität der zellfrei-synthetisierten Carboxylesterase in Mikrosomen wurde durch Esterase-Assays und den Calcium-Fluoreszenzfarbstoff Fluo-5N Acetoxymethylester (Fluo-5N AM) Belastungstests nachgewiesen. Das Calcium-Imaging der nativ vorhandenen Ca2+-ATPase des sarkoplasmatischen/endoplasmatischen Retikulums (SERCA) und der Ryanodin-Rezeptoren (RyR) in den Mikrosomen sowie der zell-frei exprimierten TRP-Ionenkanäle wurden mit dem Fura-5N-AM- Fluoreszenzfarbstoff in mit Carboxylesterase vorsynthetisierten Mikrosomen nachgewiesen. Zusammenfassend lässt sich sagen, dass das Prinzip der zellbasierten Calcium-Imaging -Methode vielversprechend an das eukaryotische zellfreie Sf21-System angepasst werden konnte, um Ionenkanäle zu analysieren. Nach entsprechender Forschung könnte die etablierte Methode in Zukunft auch auf andere Membranproteine ausgeweitet werden. Dies umfasst die Untersuchung anderer zell-frei exprimierte GPCRs oder anderer Ionenkanäle wie Kalium-, Natrium- und Chlorid-Ionenkanäle. N2 - Fluorescence calcium imaging is still used today used as the common method, mainly due to its cheaper costs for drug screening in pharmaceutical research encompassing both ion channels, and part of G- Protein Coupled Receptors (GPCRs) in the major share of drug targets. Eukaryotic cell-free protein translation overcomes several drawbacks that might occur for overexpression of these ion-permeable proteins in the cells such as cell toxicity, poor protein expression, and deletion due to modified protein domain and time-consuming cell line maintenance. Expressing ion channels in the cell-free protein synthesis platform for future drug screening processes is still ongoing basic research and so far, no calcium imaging technique for cell-free expressed ion channels is available. Taken together, the novel application of the fluorescence calcium imaging method in eukaryotic cell-free systems is a prerequisite for rapid pharmacological drug investigations, which are not feasible using conventional call-based approaches. The aim of this thesis is to investigate the common calcium signaling pathways relevant to drug research via ion channels and GPCRs in cell-based systems. Thereby, the basic mechanism of the cell-based calcium imaging for chemical calcium indicators is studied and then translate its principle to the cell-free protein synthesis platforms. In order to study the cell-based calcium imaging and calcium pathways, two types of eye tumor cell-based models, namely benign pterygial tumor cells and malign uveal melanoma 92.1 cells were used. Specifically, the interplay between the natively expressed Transient Receptor Potential Channels (TRPs) like TRP-Vanilloid 1 (TRPV1) (Capsaicin receptor) and TRP-Melastatin 8 (TRPM8) (Menthol receptor) in these tumor cells was investigated by application of various drugs and hormones. The second aim of this thesis was to investigate the cell-based calcium mechanism of GPCRs. For this, overexpressed Mas, a GPCR and Angiotensin-(1-7) hormone receptor, from the Renin Angiotensin Aldosterone System (RAAS) in the Human Embryonic Kidney (HEK293) cells was used. Particularly, the activation of classical GPCR pathways like Phospholipase C and Proteinkinase C via Ang-(1-7) through Mas and the involvement of TRPs was proven in this study. The third aim of this thesis is to translate the cell-based calcium imaging principle to cell-free systems. Cell-based calcium imaging for chemical calcium indicators could be performed with all ease due to the presence of a large amount of cytosolic carboxylesterase, the crucial enzyme which handles the chemical calcium dyes. But this enzyme is absent in microsomes. Microsomes are used as a backbone membrane to integrate the synthesized ion channels in a eukaryotic cell-free system. Cell-free synthesized carboxylesterase in Spodoptera frugiperda (Sf21) microsomes is established as a viable calcium imaging tool to study both natively present ion permeable proteins and cell-free synthesized ion channels. The enzyme activity of the carboxylesterase in microsomes was confirmed by esterase assays and fluorescent calcium dye Fluo-5N Acetoxymethylester (Fluo-5N AM) loading assays. Fluorescent calcium imaging of natively present SERCA (Sarco Endoplasmic Reticulum Calcium ATPase) and ryanodine channels in the microsomes and cell-free expressed TRPV1 channel was demonstrated using Fluo-5N AM fluorescent dye in carboxylesterase pre-synthesized microsomes. With adequate research in future, the established method could be promisingly extended to study other cell-free expressed GPCRs or other ion channels like potassium, sodium, and chloride ion channels. KW - zellfreie Proteinsynthese KW - Calcium-Imaging KW - transient-receptor-potential-Ionenkanäle KW - calcium imaging KW - transient receptor potential ion channels KW - cell-free protein synthesis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-619872 ER -