TY - GEN A1 - Hollstein, André A1 - Segl, Karl A1 - Guanter, Luis A1 - Brell, Maximilian A1 - Enesco, Marta T1 - Ready-to-Use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images T2 - remote sensing N2 - Classification of clouds, cirrus, snow, shadows and clear sky areas is a crucial step in the pre-processing of optical remote sensing images and is a valuable input for their atmospheric correction. The Multi-Spectral Imager on board the Sentinel-2's of the Copernicus program offers optimized bands for this task and delivers unprecedented amounts of data regarding spatial sampling, global coverage, spectral coverage, and repetition rate. Efficient algorithms are needed to process, or possibly reprocess, those big amounts of data. Techniques based on top-of-atmosphere reflectance spectra for single-pixels without exploitation of external data or spatial context offer the largest potential for parallel data processing and highly optimized processing throughput. Such algorithms can be seen as a baseline for possible trade-offs in processing performance when the application of more sophisticated methods is discussed. We present several ready-to-use classification algorithms which are all based on a publicly available database of manually classified Sentinel-2A images. These algorithms are based on commonly used and newly developed machine learning techniques which drastically reduce the amount of time needed to update the algorithms when new images are added to the database. Several ready-to-use decision trees are presented which allow to correctly label about 91% of the spectra within a validation dataset. While decision trees are simple to implement and easy to understand, they offer only limited classification skill. It improves to 98% when the presented algorithm based on the classical Bayesian method is applied. This method has only recently been used for this task and shows excellent performance concerning classification skill and processing performance. A comparison of the presented algorithms with other commonly used techniques such as random forests, stochastic gradient descent, or support vector machines is also given. Especially random forests and support vector machines show similar classification skill as the classical Bayesian method. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 455 KW - Sentinel-2 MSI KW - cloud detection KW - snow detection KW - cirrus detection KW - shadow detection KW - Bayesian classification KW - machine learning KW - decision trees Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407938 ER - TY - GEN A1 - Bösche, Nina Kristine A1 - Rogass, Christian A1 - Lubitz, Christin A1 - Brell, Maximilian A1 - Herrmann, Sabrina A1 - Mielke, Christian A1 - Tonn, Sabine A1 - Appelt, Oona A1 - Altenberger, Uwe A1 - Kaufmann, Hermann T1 - Hyperspectral REE (Rare Earth Element) mapping of outcrops BT - applications for neodymium detection N2 - In this study, an in situ application for identifying neodymium (Nd) enriched surface materials that uses multitemporal hyperspectral images is presented (HySpex sensor). Because of the narrow shape and shallow absorption depth of the neodymium absorption feature, a method was developed for enhancing and extracting the necessary information for neodymium from image spectra, even under illumination conditions that are not optimal. For this purpose, the two following approaches were developed: (1) reducing noise and analyzing changing illumination conditions by averaging multitemporal image scenes and (2) enhancing the depth of the desired absorption band by deconvolving every image spectrum with a Gaussian curve while the rest of the spectrum remains unchanged (Richardson-Lucy deconvolution). To evaluate these findings, nine field samples from the Fen complex in Norway were analyzed using handheld X-ray fluorescence devices and by conducting detailed laboratory-based geochemical rare earth element determinations. The result is a qualitative outcrop map that highlights zones that are enriched in neodymium. To reduce the influences of non-optimal illumination, particularly at the studied site, a minimum of seven single acquisitions is required. Sharpening the neodymium absorption band allows for robust mapping, even at the outer zones of enrichment. From the geochemical investigations, we found that iron oxides decrease the applicability of the method. However, iron-related absorption bands can be used as secondary indicators for sulfidic ore zones that are mainly enriched with rare earth elements. In summary, we found that hyperspectral spectroscopy is a noninvasive, fast and cost-saving method for determining neodymium at outcrop surfaces T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 350 KW - rare earth elements KW - imaging spectroscopy KW - neodymium KW - hyperspectral KW - HySpex KW - remote sensing KW - Fen complex Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400171 ER -