TY - THES A1 - Teichmann, Erik T1 - Partial synchronization in coupled systems with repulsive and attractive interaction T1 - Partielle Synchronisation in Gekoppelten System mit Abstoßender und Anziehender Wechselwirkung N2 - Partial synchronous states exist in systems of coupled oscillators between full synchrony and asynchrony. They are an important research topic because of their variety of different dynamical states. Frequently, they are studied using phase dynamics. This is a caveat, as phase dynamics are generally obtained in the weak coupling limit of a first-order approximation in the coupling strength. The generalization to higher orders in the coupling strength is an open problem. Of particular interest in the research of partial synchrony are systems containing both attractive and repulsive coupling between the units. Such a mix of coupling yields very specific dynamical states that may help understand the transition between full synchrony and asynchrony. This thesis investigates partial synchronous states in mixed-coupling systems. First, a method for higher-order phase reduction is introduced to observe interactions beyond the pairwise one in the first-order phase description, hoping that these may apply to mixed-coupling systems. This new method for coupled systems with known phase dynamics of the units gives correct results but, like most comparable methods, is computationally expensive. It is applied to three Stuart-Landau oscillators coupled in a line with a uniform coupling strength. A numerical method is derived to verify the analytical results. These results are interesting but give importance to simpler phase models that still exhibit exotic states. Such simple models that are rarely considered are Kuramoto oscillators with attractive and repulsive interactions. Depending on how the units are coupled and the frequency difference between the units, it is possible to achieve many different states. Rich synchronization dynamics, such as a Bellerophon state, are observed when considering a Kuramoto model with attractive interaction in two subpopulations (groups) and repulsive interactions between groups. In two groups, one attractive and one repulsive, of identical oscillators with a frequency difference, an interesting solitary state appears directly between full and partial synchrony. This system can be described very well analytically. N2 - Partiell synchronisierte Zustände existieren zwischen voller Synchronisation und Asynchronie, in Systemen von gekoppelten Oszillatoren. Das Verständnis von partieller Synchronisation ist ein wichtiger Forschungszweig, da sie viele dynamische Zustände enthalten. Sie werden oft mithilfe von Phasendynamiken untersucht. Das ist jedoch ein Nachteil, da Phasendynamiken für gewöhnlich nur im Grenzfall von schwacher Kopplung, also einer Näherung in erster Ordnung der Kopplungsstärke, betrachtet werden. Die Verallgemeinerung zu höheren Ordnungen ist weiterhin ein offenes Problem. Systeme mit anziehender und abstoßender Kopplung zwischen den einzelnen Oszillatoren sind von speziellem Interesse in der Erforschung von partieller Synchronisation. Solch eine Mischung aus Kopplungsstärken führt zu bestimmten dynamischen Zuständen, die den Übergang von Synchronisation zu Asynchronie erklären könnten. Diese Arbeit untersucht solche Zustände in Systemen mit gemischten Kopplungsstärken. Zuerst wird eine neue Methode zur Bestimmung von Phasendynamiken in höheren Ordnungen eingeführt. Sie betrachtet mehr Kopplungsterme, als die einfachen paarweisen Interaktionen die in der ersten Ordnung der Kopplungsstärke auftreten, in der Hoffnung, dass diese Methode auch auf Systeme mit gemischter Kopplung anwendbar ist. Die neue Methode für Oszillatoren mit einer bekannten Phasendynamik, führt zu den richtigen Ergebnissen, ist aber aufwendig zu berechnen. Die Methode wird auf drei, in einer Linie gekoppelten, Stuart-Landau Oszillatoren angewendet. Eine numerische Methode wird abgeleitet, um die analytischen Ergebnisse zu verifizieren. Diese Ergebnisse sind interessant, aber durch die benötigte hohe Rechenleistung ist es weiterhin vorteilhaft einfachere Phasenmodelle zu untersuchen, die exotischere Zustände erreichen. Solch ein einfaches Model, das eher selten Beachtung findet, ist das Kuramoto Model mit anziehender und abstoßender Kopplung. Abhängig davon, wie die Oszillatoren gekoppelt und wie die Frequenzunterschiede zwischen den einzelnen Oszillatoren sind, ist es möglich viele verschiedene Zustände zu erreichen. Interessante Synchronisierungsdynamiken werden erreicht, wie zum Beispiel der Bellerophon Zustand, wenn ein Kuramoto Model mit zwei Gruppen, mit anziehender Kopplung innerhalb der Gruppen und abstoßender Kopplung zwischen den Gruppen, untersucht wird. Bei zwei Gruppen, eine anziehend und eine abstoßend, von identischen Oszillatoren mit einem Frequenzunterschied zwischen den Gruppen, wird ein interessanter solitärer Zustand beobachtet. Er befindet sich direkt am Übergang zwischen Synchronisation und partieller Synchronisation. Solch ein System ist sehr gut analytisch beschreibbar. KW - Synchronization KW - Dynamical Systems KW - Coupled Systems KW - gekoppelte System KW - dynamische Systeme KW - Synchronisation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-528943 ER - TY - THES A1 - Zheng, Chunming T1 - Bursting and synchronization in noisy oscillatory systems T1 - Bursting und Synchronisation in verrauschten, oszillierenden Systemen N2 - Noise is ubiquitous in nature and usually results in rich dynamics in stochastic systems such as oscillatory systems, which exist in such various fields as physics, biology and complex networks. The correlation and synchronization of two or many oscillators are widely studied topics in recent years. In this thesis, we mainly investigate two problems, i.e., the stochastic bursting phenomenon in noisy excitable systems and synchronization in a three-dimensional Kuramoto model with noise. Stochastic bursting here refers to a sequence of coherent spike train, where each spike has random number of followers due to the combined effects of both time delay and noise. Synchronization, as a universal phenomenon in nonlinear dynamical systems, is well illustrated in the Kuramoto model, a prominent model in the description of collective motion. In the first part of this thesis, an idealized point process, valid if the characteristic timescales in the problem are well separated, is used to describe statistical properties such as the power spectral density and the interspike interval distribution. We show how the main parameters of the point process, the spontaneous excitation rate, and the probability to induce a spike during the delay action can be calculated from the solutions of a stationary and a forced Fokker-Planck equation. We extend it to the delay-coupled case and derive analytically the statistics of the spikes in each neuron, the pairwise correlations between any two neurons, and the spectrum of the total output from the network. In the second part, we investigate the three-dimensional noisy Kuramoto model, which can be used to describe the synchronization in a swarming model with helical trajectory. In the case without natural frequency, the Kuramoto model can be connected with the Vicsek model, which is widely studied in collective motion and swarming of active matter. We analyze the linear stability of the incoherent state and derive the critical coupling strength above which the incoherent state loses stability. In the limit of no natural frequency, an exact self-consistent equation of the mean field is derived and extended straightforward to any high-dimensional case. N2 - Rauschen ist in der Natur allgegenwärtig und führt zu einer reichen Dynamik in stochastischen Systemen von gekoppelten Oszillatoren, die in so unterschiedlichen Bereichen wie Physik, Biologie und in komplexen Netzwerken existieren. Korrelation und Synchronisation von zwei oder vielen Oszillatoren ist in den letzten Jahren ein aktives Forschungsfeld. In dieser Arbeit untersuchen wir hauptsächlich zwei Probleme, d.h. das stochastische Burst-Phänomen in verrauschten anregbaren Systemen und die Synchronisation in einem dreidimensionalen Kuramoto-Modell mit Rauschen. Stochastisches Bursting bezieht sich hier auf eine Folge von kohärenten Spike-Zügen, bei denen jeder Spike aufgrund der kombinierten Effekte von Zeitverzögerung und Rauschen eine zufällige Anzahl von Folge Spikes aufweist. Die Synchronisation als universelles Phänomen in nichtlinearen dynamischen Systemen kann anhand des Kuramoto-Modells, einem grundlegenden Modell bei der gekoppelter Oszillatoren und kollektiver Bewegung, gut demonstriert und analysiert werden. Im ersten Teil dieser Arbeit wird ein idealisierter Punktprozess betrachtet, der gültig ist, wenn die charakteristischen Zeitskalen im Problem gut voneinander getrennt sind,um statistische Eigenschaften wie die spektrale Leistungsdichte und die Intervallverteilung zwischen Neuronen Impulsen zu beschreiben. Wir zeigen, wie die Hauptparameter des Punktprozesses, die spontane Anregungsrate und die Wahrscheinlichkeit, während der Verzögerungsaktion einen Impuls zu induzieren, aus den Lösungen einer stationären und einer getriebenen Fokker-Planck-Gleichung berechnet werden können. Wir erweitern dieses Ergebnis auf den verzögerungsgekoppelten Fall und leiten analytisch die Statistiken der Impulse in jedem Neuron, die paarweisen Korrelationen zwischen zwei beliebigen Neuronen und das Spektrum der Zeitreihe alle Impulse aus dem Netzwerk ab. Im zweiten Teil untersuchen wir das dreidimensionale verrauschte Kuramoto-Modell, mit dem die Synchronisation eines Schwarmmodells mit schraubenförmigen Flugbahnen beschrieben werden kann. Im Fall ohne Eigenfrequenz jedes Teilchensist das System äquivalent zum Vicsek Modell, welches in der Beschreibung der kollektiven Bewegung von Schwärmen und aktiver Materie eine breite Anwendung findet. Wir analysieren die lineare Stabilität des inkohärenten Zustands und leiten die kritische Kopplungsstärke ab, oberhalb derer der inkohärente Zustand an Stabilität verliert. Im Fall ohne Eigenfrequenz wird eine exakte selbstkonsistente Gleichung für das mittlere Feld abgeleitet und direkt für höherdimensionale Bewegungen verallgemeinert. KW - Synchronization KW - Kuramoto model KW - Oscillation KW - stochastic bursting KW - Synchronisation KW - Kuramoto-Modell KW - Oszillatoren KW - Stochastisches Bursting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-500199 ER - TY - THES A1 - Gong, Chen Chris T1 - Synchronization of coupled phase oscillators BT - theory and modelling BT - Theorie und Modellierung N2 - Oscillatory systems under weak coupling can be described by the Kuramoto model of phase oscillators. Kuramoto phase oscillators have diverse applications ranging from phenomena such as communication between neurons and collective influences of political opinions, to engineered systems such as Josephson Junctions and synchronized electric power grids. This thesis includes the author's contribution to the theoretical framework of coupled Kuramoto oscillators and to the understanding of non-trivial N-body dynamical systems via their reduced mean-field dynamics. The main content of this thesis is composed of four parts. First, a partially integrable theory of globally coupled identical Kuramoto oscillators is extended to include pure higher-mode coupling. The extended theory is then applied to a non-trivial higher-mode coupled model, which has been found to exhibit asymmetric clustering. Using the developed theory, we could predict a number of features of the asymmetric clustering with only information of the initial state provided. The second part consists of an iterated discrete-map approach to simulate phase dynamics. The proposed map --- a Moebius map --- not only provides fast computation of phase synchronization, it also precisely reflects the underlying group structure of the dynamics. We then compare the iterated-map dynamics and various analogous continuous-time dynamics. We are able to replicate known phenomena such as the synchronization transition of the Kuramoto-Sakaguchi model of oscillators with distributed natural frequencies, and chimera states for identical oscillators under non-local coupling. The third part entails a particular model of repulsively coupled identical Kuramoto-Sakaguchi oscillators under common random forcing, which can be shown to be partially integrable. Via both numerical simulations and theoretical analysis, we determine that such a model cannot exhibit stationary multi-cluster states, contrary to the numerical findings in previous literature. Through further investigation, we find that the multi-clustering states reported previously occur due to the accumulation of discretization errors inherent in the integration algorithms, which introduce higher-mode couplings into the model. As a result, the partial integrability condition is violated. Lastly, we derive the microscopic cross-correlation of globally coupled non-identical Kuramoto oscillators under common fluctuating forcing. The effect of correlation arises naturally in finite populations, due to the non-trivial fluctuations of the meanfield. In an idealized model, we approximate the finite-sized fluctuation by a Gaussian white noise. The analytical approximation qualitatively matches the measurements in numerical experiments, however, due to other periodic components inherent in the fluctuations of the mean-field there still exist significant inconsistencies. N2 - Oszillatorische Systeme unter schwacher Kopplung können durch das Kuramoto-Modell beschrieben werden. Kuramoto-Phasenoszillatoren besitzen eine Vielzahl von Modellanwendungsfällen von der Kommunikation zwischen Nervenzellen bis zu kollektiven Einflüssen auf die politische Meinungsbildung sowie ingenieurwissenschaftlichen Anwendungen wie Josephson-Kontakten und synchronisierten elektrischen Übertragungsnetzen. In dieser Dissertation werden die Beiträge der Autorin zur Theorie der Kuramoto-Oszillatorensysteme und zum Verständnis nichttrivialer dynamischer NKörpersysteme durch die Analyse ihrer reduzierten Mittelfelddynamik zusammengefasst. Der Hauptinhalt dieser Dissertation umfasst vier Teile: Zuerst wird eine teilweise integrable Theorie global gekoppelter, identischer Kuramoto-Oszillatoren so erweitert, dass sie auch den Fall reiner Phasenkopplung höherer Ordnung umfasst. Die erweiterte Theorie wird anschließend auf ein nichttriviales Modell mit harmonischer Kopplung höherer Ordnung angewendet, welches asymmetrisches Clustering aufweist. Die Theorie sagt rein auf Basis der Anfangssystembedingungen einige Eigenschaften des asymmetrischen Clustering erfolgreich voraus. Im zweiten Teil wird die Phasendynamik von Kuramoto-Oszillatoren mithilfe einer iterierten diskreten Abbildung simuliert. Diese Abbildung – eine Möbius-Abbildung – erlaubt nicht nur eine schnelle Berechnung der Phasensynchronisation sondern spiegelt die zugrundeliegende Gruppenstruktur der Phasendynamik auch exakt wieder. Die Dynamik der iterierten Abbildung wird mit verschiedenen analogen Dynamiken mit kontinuierlicher Zeitachse verglichen. Hierbei werden bekannte Phänomene, wie etwa der Phasenübergang im Kuramoto-Sakaguchi-Oszillatormodell mit einer Verteilung der natürlichen Frequenzen und “Chimärenzustände” (chimera states) bei identischen Oszillatoren nichtlokalen Kopplungstypen, repliziert. Im dritten Teil wird ein Modell von repulsiv gekoppelten, identischen, gemeinsam stochastisch getriebenen Kuramoto-Sakaguchi-Oszillatoren beschrieben, dass teilweise integrabel ist. Sowohl durch numerische Simulationen als auch theoretische Analyse wird gezeigt, dass dieses Modell keine stationären Multi-Cluster-Zustände einnehmen kann, was den Ergebnissen anderer numerischer Studien in der Literatur widerspricht. Durch eine weitergehende Analyse wird gezeigt, dass das scheinbare Auftreten von Multi-Cluster-Zuständen der Akkumulation von inhärenten Diskretisierungsfehlern der verwendeten Integrationsalgorithmen zuzuschreiben ist, welche dem Modell Phasenkopplungen höher Ordnung hinzufügen. Als Resultat dieser Effekte wird die Bedingung der teilweisen Integrabilität verletzt. Zuletzt wird die mikroskopische Kreuzkorrelation zwischen global gekoppelten, nicht identischen gemeinsam fluktuierend getriebenen Kuramoto-Oszillatoren hergeleitet. Der Korrelationseffekt entsteht auf natürliche Art und Weise in endlichen Populationen aufgrund der nichttrivialen Fluktuation des Mittelfelds. Die endliche Fluktuation wird in einem idealisierten Modell mittels gaußschem weißem Rauschen approximiert. Die analytische Annährung stimmt mit den Ergebnissen numerischer Simulationen gut überein, die inhärenten periodischen Komponenten der Fluktuation des Mittelfels verursachen allerdings trotzdem signifikante Inkonsistenzen. T2 - Synchronisation der gekoppelten Oszillatoren KW - Synchronization KW - Nonlinear Dynamics KW - Nichtlineare Dynamik KW - Synchronisation KW - Kuramoto Oscillators KW - Kuramoto-Oszillatore KW - Complex Network KW - Komplexes Netzwerk Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-487522 ER - TY - THES A1 - Peter, Franziska T1 - Transition to synchrony in finite Kuramoto ensembles T1 - Synchronisationsübergang in endlichen Kuramoto-Ensembles N2 - Synchronisation – die Annäherung der Rhythmen gekoppelter selbst oszillierender Systeme – ist ein faszinierendes dynamisches Phänomen, das in vielen biologischen, sozialen und technischen Systemen auftritt. Die vorliegende Arbeit befasst sich mit Synchronisation in endlichen Ensembles schwach gekoppelter selbst-erhaltender Oszillatoren mit unterschiedlichen natürlichen Frequenzen. Das Standardmodell für dieses kollektive Phänomen ist das Kuramoto-Modell – unter anderem aufgrund seiner Lösbarkeit im thermodynamischen Limes unendlich vieler Oszillatoren. Ähnlich einem thermodynamischen Phasenübergang zeigt im Fall unendlich vieler Oszillatoren ein Ordnungsparameter den Übergang von Inkohärenz zu einem partiell synchronen Zustand an, in dem ein Teil der Oszillatoren mit einer gemeinsamen Frequenz rotiert. Im endlichen Fall treten Fluktuationen auf. In dieser Arbeit betrachten wir den bisher wenig beachteten Fall von bis zu wenigen hundert Oszillatoren, unter denen vergleichbar starke Fluktuationen auftreten, bei denen aber ein Vergleich zu Frequenzverteilungen im unendlichen Fall möglich ist. Zunächst definieren wir einen alternativen Ordnungsparameter zur Feststellung einer kollektiven Mode im endlichen Kuramoto-Modell. Dann prüfen wir die Abhängigkeit des Synchronisationsgrades und der mittleren Rotationsfrequenz der kollektiven Mode von Eigenschaften der natürlichen Frequenzverteilung für verschiedene Kopplungsstärken. Wir stellen dabei zunächst numerisch fest, dass der Synchronisationsgrad stark von der Form der Verteilung (gemessen durch die Kurtosis) und die Rotationsfrequenz der kollektiven Mode stark von der Asymmetrie der Verteilung (gemessen durch die Schiefe) der natürlichen Frequenzen abhängt. Beides können wir im thermodynamischen Limes analytisch verifizieren. Mit diesen Ergebnissen können wir Erkenntnisse anderer Autoren besser verstehen und verallgemeinern. Etwas abseits des roten Fadens dieser Arbeit finden wir außerdem einen analytischen Ausdruck für die Volumenkontraktion im Phasenraum. Der zweite Teil der Arbeit konzentriert sich auf den ordnenden Effekt von Fluktuationen, die durch die Endlichkeit des Systems zustande kommen. Im unendlichen Modell sind die Oszillatoren eindeutig in kohärent und inkohärent und damit in geordnet und ungeordnet getrennt. Im endlichen Fall können die auftretenden Fluktuationen zusätzliche Ordnung unter den asynchronen Oszillatoren erzeugen. Das grundlegende Prinzip, die rauschinduzierte Synchronisation, ist aus einer Reihe von Publikationen bekannt. Unter den gekoppelten Oszillatoren nähern sich die Phasen aufgrund der Fluktuationen des Ordnungsparameters an, wie wir einerseits direkt numerisch zeigen und andererseits mit einem Synchronisationsmaß aus der gerichteten Statistik zwischen Paaren passiver Oszillatoren nachweisen. Wir bestimmen die Abhängigkeit dieses Synchronisationsmaßes vom Verhältnis von paarweiser natürlicher Frequenzdifferenz zur Varianz der Fluktuationen. Dabei finden wir eine gute Übereinstimmung mit einem einfachen analytischen Modell, in welchem wir die deterministischen Fluktuationen des Ordnungsparameters durch weißes Rauschen ersetzen. N2 - Synchronization – the adjustment of rhythms among coupled self-oscillatory systems – is a fascinating dynamical phenomenon found in many biological, social, and technical systems. The present thesis deals with synchronization in finite ensembles of weakly coupled self-sustained oscillators with distributed frequencies. The standard model for the description of this collective phenomenon is the Kuramoto model – partly due to its analytical tractability in the thermodynamic limit of infinitely many oscillators. Similar to a phase transition in the thermodynamic limit, an order parameter indicates the transition from incoherence to a partially synchronized state. In the latter, a part of the oscillators rotates at a common frequency. In the finite case, fluctuations occur, originating from the quenched noise of the finite natural frequency sample. We study intermediate ensembles of a few hundred oscillators in which fluctuations are comparably strong but which also allow for a comparison to frequency distributions in the infinite limit. First, we define an alternative order parameter for the indication of a collective mode in the finite case. Then we test the dependence of the degree of synchronization and the mean rotation frequency of the collective mode on different characteristics for different coupling strengths. We find, first numerically, that the degree of synchronization depends strongly on the form (quantified by kurtosis) of the natural frequency sample and the rotation frequency of the collective mode depends on the asymmetry (quantified by skewness) of the sample. Both findings are verified in the infinite limit. With these findings, we better understand and generalize observations of other authors. A bit aside of the general line of thoughts, we find an analytical expression for the volume contraction in phase space. The second part of this thesis concentrates on an ordering effect of the finite-size fluctuations. In the infinite limit, the oscillators are separated into coherent and incoherent thus ordered and disordered oscillators. In finite ensembles, finite-size fluctuations can generate additional order among the asynchronous oscillators. The basic principle – noise-induced synchronization – is known from several recent papers. Among coupled oscillators, phases are pushed together by the order parameter fluctuations, as we on the one hand show directly and on the other hand quantify with a synchronization measure from directed statistics between pairs of passive oscillators. We determine the dependence of this synchronization measure from the ratio of pairwise natural frequency difference and variance of the order parameter fluctuations. We find a good agreement with a simple analytical model, in which we replace the deterministic fluctuations of the order parameter by white noise. KW - synchronization KW - Kuramoto model KW - finite size KW - phase transition KW - dynamical systems KW - networks KW - Synchronisation KW - Kuramoto-Modell KW - endliche Ensembles KW - Phasenübergang KW - dynamische Systeme KW - Netzwerke Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429168 ER - TY - THES A1 - Vlasov, Vladimir T1 - Synchronization of oscillatory networks in terms of global variables T1 - Synchronisation in Netzwerken von Oszillatoren via globaler Variabler N2 - Synchronization of large ensembles of oscillators is an omnipresent phenomenon observed in different fields of science like physics, engineering, life sciences, etc. The most simple setup is that of globally coupled phase oscillators, where all the oscillators contribute to a global field which acts on all oscillators. This formulation of the problem was pioneered by Winfree and Kuramoto. Such a setup gives a possibility for the analysis of these systems in terms of global variables. In this work we describe nontrivial collective dynamics in oscillator populations coupled via mean fields in terms of global variables. We consider problems which cannot be directly reduced to standard Kuramoto and Winfree models. In the first part of the thesis we adopt a method introduced by Watanabe and Strogatz. The main idea is that the system of identical oscillators of particular type can be described by a low-dimensional system of global equations. This approach enables us to perform a complete analytical analysis for a special but vast set of initial conditions. Furthermore, we show how the approach can be expanded for some nonidentical systems. We apply the Watanabe-Strogatz approach to arrays of Josephson junctions and systems of identical phase oscillators with leader-type coupling. In the next parts of the thesis we consider the self-consistent mean-field theory method that can be applied to general nonidentical globally coupled systems of oscillators both with or without noise. For considered systems a regime, where the global field rotates uniformly, is the most important one. With the help of this approach such solutions of the self-consistency equation for an arbitrary distribution of frequencies and coupling parameters can be found analytically in the parametric form, both for noise-free and noisy cases. We apply this method to deterministic Kuramoto-type model with generic coupling and an ensemble of spatially distributed oscillators with leader-type coupling. Furthermore, with the proposed self-consistent approach we fully characterize rotating wave solutions of noisy Kuramoto-type model with generic coupling and an ensemble of noisy oscillators with bi-harmonic coupling. Whenever possible, a complete analysis of global dynamics is performed and compared with direct numerical simulations of large populations. N2 - Die Synchronisation einer großen Menge von Oszillatoren ist ein omnipräsentes Phänomen, das in verschiedenen Forschungsgebieten wie Physik, Ingenieurwissenschaften, Medizin und Weiteren beobachtet wird. In der einfachsten Situation ist von einer Menge Phasenoszillatoren jeder mit dem Anderen gekoppelt und trägt zu einem gemeinsamen Feld (dem sogenannten mean field) bei, das auf alle Oszillatoren wirkt. Dieser Formulierung wurde von Winfree und Kuramoto der Weg bereitet und sie birgt die Möglichkeit einer Analyse des Systems mithilfe von globalen Variablen. In dieser Arbeit beschreiben wir mithilfe globaler Variablen die nicht-triviale kollektive Dynamik von Oszillatorpopulationen, welche mit einem mean field verbunden sind. Wir beschäftigen uns mit Problemen die nicht direkt auf die Standardmodelle von Kuramoto und Winfree reduziert werden können. Im ersten Teil der Arbeit verwenden wir eine Methode die auf Watanabe und Stro- gatz zurückgeht. Die Hauptidee ist, dass ein System von identischen Oszillatoren eines bestimmten Typs durch ein niedrig-dimensionales System von globalen Gleichungen beschrieben werden kann. Dieser Ansatz versetzt uns in die Lage eine vollständige analytische Untersuchung für eine spezielle jedoch große Menge an Anfangsbedingungen durchzuführen. Wir zeigen des Weiteren wie der Ansatz auf nicht-identische Systeme erweitert werden kann. Wir wenden die Methode von Watanabe und Strogatz auf Reihen von Josephson-Kontakten und auf identische Phasenoszillatoren mit einer Anführer-Kopplung an. Im nächsten Teil der Arbeit betrachten wir eine selbst-konsistente mean-field-Methode, die auf allgemeine nicht-identische global gekoppelte Phasenoszillatoren mit oder ohne Rauschen angewendet werden kann. Für die betrachteten Systeme gibt es ein Regime, in dem die globalen Felder gleichförmig rotieren. Dieses ist das wichtigste Regime. Es kann mithilfe unseres Ansatzes als Lösung einer Selbstkonsistenzgleichung für beliebige Verteilungen der Frequenzen oder Kopplungsstärken gefunden werden. Die Lösung liegt in einer analytischen, parametrischen Form sowohl für den Fall mit Rauschen, als auch für den Fall ohne Rauschen, vor. Die Methode wird auf ein deterministisches System der Kuramoto-Art mit generischer Kopplung und auf ein Ensemble von räumlich verteilten Oszillatoren mit Anführer-Kopplung angewendet. Zuletzt sind wir in der Lage, die Rotierende-Wellen-Lösungen der Kuramoto-artigen Modelle mit generischer Kopplung, sowie ein Ensemble von verrauschten Oszillatoren mit bi-harmonischer Kopplung, mithilfe des von uns vorgeschlagenen selbst-konsistenten Ansatzes vollständig zu charakterisieren. Wann immer es möglich war, wurde eine vollständige Untersuchung der globalen Dynamik durchgeführt und mit numerischen Ergebnissen von großen Populationen verglichen. KW - synchronization KW - Synchronisation KW - complex networks KW - komplexe Netzwerke KW - global description Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-78182 ER - TY - THES A1 - Yeldesbay, Azamat T1 - Complex regimes of synchronization T1 - Komplexe Synchronisationszustände BT - modeling and analysis N2 - Synchronization is a fundamental phenomenon in nature. It can be considered as a general property of self-sustained oscillators to adjust their rhythm in the presence of an interaction. In this work we investigate complex regimes of synchronization phenomena by means of theoretical analysis, numerical modeling, as well as practical analysis of experimental data. As a subject of our investigation we consider chimera state, where due to spontaneous symmetry-breaking of an initially homogeneous oscillators lattice split the system into two parts with different dynamics. Chimera state as a new synchronization phenomenon was first found in non-locally coupled oscillators system, and has attracted a lot of attention in the last decade. However, the recent studies indicate that this state is also possible in globally coupled systems. In the first part of this work, we show under which conditions the chimera-like state appears in a system of globally coupled identical oscillators with intrinsic delayed feedback. The results of the research explain how initially monostable oscillators became effectivly bistable in the presence of the coupling and create a mean field that sustain the coexistence of synchronized and desynchronized states. Also we discuss other examples, where chimera-like state appears due to frequency dependence of the phase shift in the bistable system. In the second part, we make further investigation of this topic by modeling influence of an external periodic force to an oscillator with intrinsic delayed feedback. We made stability analysis of the synchronized state and constructed Arnold tongues. The results explain formation of the chimera-like state and hysteric behavior of the synchronization area. Also, we consider two sets of parameters of the oscillator with symmetric and asymmetric Arnold tongues, that correspond to mono- and bi-stable regimes of the oscillator. In the third part, we demonstrate the results of the work, which was done in collaboration with our colleagues from Psychology Department of University of Potsdam. The project aimed to study the effect of the cardiac rhythm on human perception of time using synchronization analysis. From our part, we made a statistical analysis of the data obtained from the conducted experiment on free time interval reproduction task. We examined how ones heartbeat influences the time perception and searched for possible phase synchronization between heartbeat cycles and time reproduction responses. The findings support the prediction that cardiac cycles can serve as input signals, and is used for reproduction of time intervals in the range of several seconds. N2 - Synchronisation ist ein fundamentales Naturphänomen. Es ist die grundlegende Eigenschaft sich selbsterhaltender Oszillatoren, in Gegenwart einer Wechselwirkung, danach zu streben, ihre Rhythmen anzupassen. In dieser Arbeit betrachten wir komplexe Synchronisationszustände sowohl mit Hilfe analytischer Methoden als auch durch numerische Simulation und in experimentellen Daten. Unser Untersuchungsobjekt sind die sogenannten Chimera Zustände, in welchen sich Ensemble von gekoppelten, identischen Oszillatoren auf Grund eines Symmetriebruches spontan in Gruppen mit unterschiedlicher Dynamik aufteilen. Die Entdeckung von Chimeras in zunächst nichtlokal gekoppelten Systemen hat in den letzten zehn Jahren ein großes Interesse an neuartigen Synchronisationsphänomenen geweckt. Neueste Forschungsergebnisse belegen, dass diese Zustände unter bestimmten Bedingungen auch in global gekoppelten Systemen existieren können. Solche Bedingungen werden im ersten Teil der Arbeit in Ensemblen global gekoppelter Oszillatoren mit zusätzlicher, zeitverzögerter Selbstkopplung untersucht. Wir zeigen, wie zunächst monostabile Oszillatoren in Gegenwart von dem Treiben der globalen Kopplung effektiv bistabil werden, und sich so in zwei Gruppen organisieren. Das mittlere Feld, welches durch diese Gruppen aufgebaut wird, ist quasiperiodisch wodurch der Chimera Zustand sich selbst stabilisiert. In einem anderen Beispiel zeigen wir, dass der Chimera Zustand auch durch einen frequenzabhängigen Phasenunterschied in der globalen Kopplung erreicht werden kann. Zur genaueren Untersuchung der Mechanismen, die zur effektiven Bistabilität führen, betrachten wir im zweiten Teil der Arbeit den Einfluss einer externen periodischen Kraft auf einzelne Oszillatoren mit zeitverzögerter Selbstkopplung. Wir führen die Stabilitätanalyse des synchronen Zustands durch, und stellen die Arnoldzunge dar. Im dritten Teil der Arbeit stellen wir die Ergebnisse einer Synchronisationsanalyse vor, welche in Kooperation mit Wissenschaftlern der Psychologischen Fakultät der Universität Potsdam durchgeführt wurde. In dem Projekt wurde die Auswirkung des Herzrhythmus auf die menschliche Zeitwahrnehmung erforscht. Unsere Aufgabe war es, die experimentellen Daten statistisch zu analysieren. Im Experiment sollten Probanden ein gegebenes Zeitintervall reproduzieren während gleichzeitig ihr Herzschlag aufgezeichnet wurde. Durch eine Phasenanalyse haben wir den Zusammenhang zwischen dem Herzschlag und der Start- bzw. Stoppzeit der zu reproduzierenden Zeitintervalle untersucht. Es stellt sich heraus, dass Herzschläge bei Zeitintervallen über einige Sekunden als Taktgeber dienen können. KW - synchronization KW - phase oscillators KW - chimera state KW - time perception KW - Synchronisation KW - Phasen Oszillatoren KW - chimera Zustände KW - zeitverzögerte Selbstkopplung KW - Synchronisationsanalyse KW - Zeitwahrnehmung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-73348 ER - TY - THES A1 - Bergner, André T1 - Synchronization in complex systems with multiple time scales T1 - Synchronisation in komplexen Systemen mit mehreren Zeitskalen N2 - In the present work synchronization phenomena in complex dynamical systems exhibiting multiple time scales have been analyzed. Multiple time scales can be active in different manners. Three different systems have been analyzed with different methods from data analysis. The first system studied is a large heterogenous network of bursting neurons, that is a system with two predominant time scales, the fast firing of action potentials (spikes) and the burst of repetitive spikes followed by a quiescent phase. This system has been integrated numerically and analyzed with methods based on recurrence in phase space. An interesting result are the different transitions to synchrony found in the two distinct time scales. Moreover, an anomalous synchronization effect can be observed in the fast time scale, i.e. there is range of the coupling strength where desynchronization occurs. The second system analyzed, numerically as well as experimentally, is a pair of coupled CO₂ lasers in a chaotic bursting regime. This system is interesting due to its similarity with epidemic models. We explain the bursts by different time scales generated from unstable periodic orbits embedded in the chaotic attractor and perform a synchronization analysis of these different orbits utilizing the continuous wavelet transform. We find a diverse route to synchrony of these different observed time scales. The last system studied is a small network motif of limit cycle oscillators. Precisely, we have studied a hub motif, which serves as elementary building block for scale-free networks, a type of network found in many real world applications. These hubs are of special importance for communication and information transfer in complex networks. Here, a detailed study on the mechanism of synchronization in oscillatory networks with a broad frequency distribution has been carried out. In particular, we find a remote synchronization of nodes in the network which are not directly coupled. We also explain the responsible mechanism and its limitations and constraints. Further we derive an analytic expression for it and show that information transmission in pure phase oscillators, such as the Kuramoto type, is limited. In addition to the numerical and analytic analysis an experiment consisting of electrical circuits has been designed. The obtained results confirm the former findings. N2 - In der vorliegenden Arbeit wurden Synchronisationsphänomene in komplexen Systemen mit mehreren Zeitskalen untersucht. Es gibt mehrere Möglichkeiten wie diese verschiedenen Zeitskalen vorkommen können. Drei verschiedene Systeme, jedes mit einer anderen Art von zeitlicher Multiskalität, wurden mit unterschiedlichen Methoden der Datenanalyse untersucht. Das erste untersuchte System ist ein ausgedehntes heterogenes Netzwerk von Neuronen mit zwei dominanten Zeitskalen, zum einen die schnelle Folge von Aktionspotenzialen und zum anderen einer abwechselnden Folge von einer Phase von Aktionspotenzialen und einer Ruhephase. Dieses System wurde numerisch integriert und mit Methoden der Phasenraumrekurrenz untersucht. Ein interessantes Ergebnis ist der unterschiedliche Übergang zur Synchronisation der Neuronen auf den beiden verschiedenen Zeitskalen. Des weiteren kann auf der schnellen Zeitskala eine anomale Synchronisation beobachtet werden, d.h. es gibt einen Bereich der Kopplungsstärke in dem es zu einer Desynchronisation kommt. Als zweites wurde, sowohl numerisch als auch experimentell, ein System von gekoppelten CO₂ Lasern untersucht, welche in einem chaotischen bursting Modus arbeiten. Dieses System ist auch durch seine Äquivalenz zu Epidemiemodellen interessant. Wir erklären die Bursts durch unterschiedliche Zeitskalen, welche durch in den chaotischen Attraktor eingebettete instabile periodische Orbits generiert werden. Wir führen eine Synchronisationsanalyse mit Hilfe der kontinuierlichen Wavelettransformation durch und finden einen unterschiedlichen Übergang zur Synchronisation auf den unterschiedlichen Zeitskalen. Das dritte analysierte System ist ein Netzwerkmotiv von Grenzzyklusoszillatoren. Genauer handelt es sich um ein Nabenmotiv, welches einen elementaren Grundbaustein von skalenfreien Netzwerken darstellt, das sind Netzwerke die eine bedeutende Rolle in vielen realen Anwendungen spielen. Diese Naben sind von besonderer Bedeutung für die Kommunikation und den Informationstransport in komplexen Netzwerken. Hierbei wurde eine detaillierte Untersuchung des Synchronisationsmechanismus in oszillatorischen Netzwerken mit einer breiten Frequenzverteilung durchgeführt. Insbesondere beobachten wir eine Fernsynchronisation von Netzwerkknoten, die nur indirekt über andere Oszillatoren miteinander gekoppelt sind. Wir erklären den zu Grunde liegenden Mechanismus und zeigen dessen Grenzen und Bedingungen auf. Des weiteren leiten wir einen analytischen Ausdruck für den Mechanismus her und zeigen, dass eine Informationsübertragung in reinen Phasenoszillatoren, wie beispielsweise vom Kuramototyp, eingeschränkt ist. Diese Ergebnisse konnten wir durch Experimente mit elektrischen Schaltkreisen bestätigen. KW - Komplexe Systeme KW - Synchronisation KW - Nichtlineare Dynamik KW - Datenanalyse KW - complex systems KW - synchronization KW - nonlinear dynamics KW - data analysis Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53407 ER - TY - THES A1 - Tönjes, Ralf T1 - Pattern formation through synchronization in systems of nonidentical autonomous oscillators T1 - Musterbildung durch Synchronisation in Systemen nicht identischer, autonomer Oszillatoren N2 - This work is concerned with the spatio-temporal structures that emerge when non-identical, diffusively coupled oscillators synchronize. It contains analytical results and their confirmation through extensive computer simulations. We use the Kuramoto model which reduces general oscillatory systems to phase dynamics. The symmetry of the coupling plays an important role for the formation of patterns. We have studied the ordering influence of an asymmetry (non-isochronicity) in the phase coupling function on the phase profile in synchronization and the intricate interplay between this asymmetry and the frequency heterogeneity in the system. The thesis is divided into three main parts. Chapter 2 and 3 introduce the basic model of Kuramoto and conditions for stable synchronization. In Chapter 4 we characterize the phase profiles in synchronization for various special cases and in an exponential approximation of the phase coupling function, which allows for an analytical treatment. Finally, in the third part (Chapter 5) we study the influence of non-isochronicity on the synchronization frequency in continuous, reaction diffusion systems and discrete networks of oscillators. N2 - Die vorliegende Arbeit beschäftigt sich in Theorie und Simulation mit den raum-zeitlichen Strukturen, die entstehen, wenn nicht-identische, diffusiv gekoppelte Oszillatoren synchronisieren. Wir greifen dabei auf die von Kuramoto hergeleiteten Phasengleichungen zurück. Eine entscheidene Rolle für die Musterbildung spielt die Symmetrie der Kopplung. Wir untersuchen den ordnenden Einfluss von Asymmetrie (Nichtisochronizität) in der Phasenkopplungsfunktion auf das Phasenprofil in Synchronisation und das Zusammenspiel zwischen dieser Asymmetrie und der Frequenzheterogenität im System. Die Arbeit gliedert sich in drei Hauptteile. Kapitel 2 und 3 beschäftigen sich mit den grundlegenden Gleichungen und den Bedingungen für stabile Synchronisation. Im Kapitel 4 charakterisieren wir die Phasenprofile in Synchronisation für verschiedene Spezialfälle sowie in der von uns eingeführten exponentiellen Approximation der Phasenkopplungsfunktion. Schliesslich untersuchen wir im dritten Teil (Kap.5) den Einfluss von Nichtisochronizität auf die Synchronisationsfrequenz in kontinuierlichen, oszillatorischen Reaktions-Diffusionssystemen und diskreten Netzwerken von Oszillatoren. KW - Synchronisation KW - Musterbildung KW - Phasen-Gleichungen KW - Phasen-Oszillatoren KW - Kuramoto Modell KW - synchronization KW - pattern formation KW - phase equations KW - phase oscillators KW - Kuramoto model Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15973 ER - TY - THES A1 - Goldobin, Denis S. T1 - Coherence and synchronization of noisy-driven oscillators T1 - Kohärenz und Synchronisation verrauschter Oszillatoren N2 - In the present dissertation paper we study problems related to synchronization phenomena in the presence of noise which unavoidably appears in real systems. One part of the work is aimed at investigation of utilizing delayed feedback to control properties of diverse chaotic dynamic and stochastic systems, with emphasis on the ones determining predisposition to synchronization. Other part deals with a constructive role of noise, i.e. its ability to synchronize identical self-sustained oscillators. First, we demonstrate that the coherence of a noisy or chaotic self-sustained oscillator can be efficiently controlled by the delayed feedback. We develop the analytical theory of this effect, considering noisy systems in the Gaussian approximation. Possible applications of the effect for the synchronization control are also discussed. Second, we consider synchrony of limit cycle systems (in other words, self-sustained oscillators) driven by identical noise. For weak noise and smooth systems we proof the purely synchronizing effect of noise. For slightly different oscillators and/or slightly nonidentical driving, synchrony becomes imperfect, and this subject is also studied. Then, with numerics we show moderate noise to be able to lead to desynchronization of some systems under certain circumstances. For neurons the last effect means “antireliability” (the “reliability” property of neurons is treated to be important from the viewpoint of information transmission functions), and we extend our investigation to neural oscillators which are not always limit cycle ones. Third, we develop a weakly nonlinear theory of the Kuramoto transition (a transition to collective synchrony) in an ensemble of globally coupled oscillators in presence of additional time-delayed coupling terms. We show that a linear delayed feedback not only controls the transition point, but effectively changes the nonlinear terms near the transition. A purely nonlinear delayed coupling does not affect the transition point, but can reduce or enhance the amplitude of collective oscillations. N2 - In dieser Dissertation werden Synchronisationsphänomene im Vorhandensein von Rauschen studiert. Ein Ziel dieser Arbeit besteht in der Untersuchung der Anwendbarkeit verzögerter Rückkopplung zur Kontrolle von bestimmten Eigenschaften chaotischer oder stochastischer Systeme. Der andere Teil beschäftigt sich mit den konstruktiven Eigenschaften von Rauschen. Insbesondere wird die Möglichkeit, identische selbsterregte Oszillatoren zu synchronisieren untersucht. Als erstes wird gezeigt, dass Kohärenz verrauschter oder chaotischer Oszillatoren durch verzögertes Rückkoppeln kontrolliert werden kann. Es wird eine analytische Beschreibung dieses Phänomens in verrauschten Systemen entwickelt. Außerdem werden mögliche Anwendungen im Zusammenhang mit Synchronisationskontrolle vorgestellt und diskutiert. Als zweites werden Oszillatoren unter dem Einfluss von identischem Rauschen betrachtet. Für schwaches Rauschen und genügend glatte Systeme wird bewiesen, das Rauschen zu Synchronisation führt. Für leicht unterschiedliche Oszillatoren und leicht unterschiedliches Rauschen wird die Synchronisation unvollständig. Dieser Effekt wird auch untersucht. Dann wird mit Hilfe von Numerik gezeigt, dass moderates Rauschen zur Desynchronisierung von bestimmten Systemen führen kann. Dieser Effekt wird auch in neuronalen Oszillatoren untersucht, welche nicht unbedingt Grenzzyklen besitzen müssen. Im dritten Teil wird eine schwache nichtlineare Theorie des Kuramoto-Übergangs, dem Übergang zur kollektiven Synchronisation, in einem Ensemble von global gekoppelten Oszillatoren mit zusätzlichen zeitverzögerten Kopplungstermen entwickelt. Es wird gezeigt, dass lineare Rückkopplung nicht nur den Übergangspunkt bestimmt, sondern auch die nichtlinearen Terme in der Nähe des Übergangs entscheidend verändert. Eine rein nichtlineare Rückkopplung verändert den Übergang nicht, kann aber die Amplitude der kollektiven Oszillationen vergrößern oder verringern. KW - Rauschen KW - Chaos KW - Phasendiffusion KW - Neuronsreliabilität KW - Synchronisation KW - Noise KW - Chaos KW - Phase Diffusion KW - Reliability of Neurons KW - Synchronization Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15047 ER - TY - THES A1 - Pereira da Silva, Tiago T1 - Synchronization in active networks T1 - Synchronisation in Aktiven Netzwerken N2 - In nature one commonly finds interacting complex oscillators which by the coupling scheme form small and large networks, e.g. neural networks. Surprisingly, the oscillators can synchronize, still preserving the complex behavior. Synchronization is a fundamental phenomenon in coupled nonlinear oscillators. Synchronization can be enhanced at different levels, that is, the constraints on which the synchronization appears. Those can be in the trajectory amplitude, requiring the amplitudes of both oscillators to be equal, giving place to complete synchronization. Conversely, the constraint could also be in a function of the trajectory, e.g. the phase, giving place to phase synchronization (PS). In this case, one requires the phase difference between both oscillators to be finite for all times, while the trajectory amplitude may be uncorrelated. The study of PS has shown its relevance to important technological problems, e.g. communication, collective behavior in neural networks, pattern formation, Parkinson disease, epilepsy, as well as behavioral activities. It has been reported that it mediates processes of information transmission and collective behavior in neural and active networks and communication processes in the Human brain. In this work, we have pursed a general way to analyze the onset of PS in small and large networks. Firstly, we have analyzed many phase coordinates for compact attractors. We have shown that for a broad class of attractors the PS phenomenon is invariant under the phase definition. Our method enables to state about the existence of phase synchronization in coupled chaotic oscillators without having to measure the phase. This is done by observing the oscillators at special times, and analyzing whether this set of points is localized. We have show that this approach is fruitful to analyze the onset of phase synchronization in chaotic attractors whose phases are not well defined, as well as, in networks of non-identical spiking/bursting neurons connected by chemical synapses. Moreover, we have also related the synchronization and the information transmission through the conditional observations. In particular, we have found that inside a network clusters may appear. These can be used to transmit more than one information, which provides a multi-processing of information. Furthermore, These clusters provide a multichannel communication, that is, one can integrate a large number of neurons into a single communication system, and information can arrive simultaneously at different places of the network. N2 - In oder Natur sind interagierende komplexe Oszillatoren, die Netzwerke bilden, häufig anzutreffen. Erstaunlich ist, dass sich diese Oszillatoren synchronisieren, ohne ihr eigenes komplexes Verhalten zu verlieren. Diese Fähigkeit zur Synchronisation ist eine wesentliche Eigenschaft von gekoppelten nichtlinearen Oszillatoren. Die Fähigkeit zur Synchronisation kann auf unterschiedliche Weise durch Eingriff in die Bedingungen, die zur Synchronisation führen, verbessert werden. Es kann sowohl eine Synchronisation der Amplituden als auch der Phasen stattfinden bzw. erzwungen werden. Insbesondere Phase Synchronisation über die Phase (PS) hat sich in den wichtigen Bereichen der Technik, Kommunikation, Soziologie und Neurologie als Modellierungsgrundlage bewiesen. Bekannte Beispiele aus der Neurologie sind Parkinson und Epilepsie. In der vorliegenden Arbeit haben wir nach einem verallgemeinerten Weg gesucht, das Phänomen der PS in Netzwerken analysieren zu können. Zuerst haben wir viele Phasendefinitionen für einfache Attraktoren (Oszillatoren mit definierten Phaseneigenschaften) untersucht und festgestellt, dass das Phänomen der PS unabhängig von der Definition der Phase ist. Als nächstes haben wir begonnen, die maximale Abweichungen abzuschätzen, bei der die Synchronisation für bei einer gegebene Phase nicht verlorengeht. Abschließend haben wir eine Methode entwickelt, mittels derer Synchronisation in chaotischen System festgestellt werden kann, ohne die Phase selbst messen zu müssen. Dazu wird zu geeigneten Zeitpunkten der Zustandsraum untersucht. Wir können zeigen, dass mittels dieser Methode in chaotisch Systemen sowohl die Grössenordnung der Synchronisation als auch die Bereiche, in denen Synchronisation stattfindet, untersucht werden können. Dabei kann festgestellt werden, dass der Grad der Synchronisation mit der Menge an Information in Beziehung steht, die an verschieden Stellen eines Netzwerks gleichzeitig übermittelt wird. Dies kann zur Modellierung der Informationsübertragung über die Synapsen im Gehirn verwendet werden. KW - Synchronisation KW - Netzwerk KW - Phase KW - Information KW - Synchronization KW - Networks KW - Phase KW - Information Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14347 ER - TY - THES A1 - Kuckländer, Nina T1 - Synchronization via correlated noise and automatic control in ecological systems T1 - Synchronisation in ökologischen Systemen durch korreliertes Rauschen und automatische Kontrolle N2 - Subject of this work is the possibility to synchronize nonlinear systems via correlated noise and automatic control. The thesis is divided into two parts. The first part is motivated by field studies on feral sheep populations on two islands of the St. Kilda archipelago, which revealed strong correlations due to environmental noise. For a linear system the population correlation equals the noise correlation (Moran effect). But there exists no systematic examination of the properties of nonlinear maps under the influence of correlated noise. Therefore, in the first part of this thesis the noise-induced correlation of logistic maps is systematically examined. For small noise intensities it can be shown analytically that the correlation of quadratic maps in the fixed-point regime is always smaller than or equal to the noise correlation. In the period-2 regime a Markov model explains qualitatively the main dynamical characteristics. Furthermore, two different mechanisms are introduced which lead to a higher correlation of the systems than the environmental correlation. The new effect of "correlation resonance" is described, i. e. the correlation yields a maximum depending on the noise intensity. In the second part of the thesis an automatic control method is presented which synchronizes different systems in a robust way. This method is inspired by phase-locked loops and is based on a feedback loop with a differential control scheme, which allows to change the phases of the controlled systems. The effectiveness of the approach is demonstrated for controlled phase synchronization of regular oscillators and foodweb models. N2 - Gegenstand der Arbeit ist die Möglichkeit der Synchronisierung von nichtlinearen Systemen durch korreliertes Rauschen und automatische Kontrolle. Die Arbeit gliedert sich in zwei Teile. Der erste Teil ist motiviert durch Feldstudien an wilden Schafspopulationen auf zwei Inseln des St. Kilda Archipels, die starke Korrelationen aufgrund von Umwelteinflüssen zeigen. In einem linearen System entspricht die Korrelation der beiden Populationen genau der Rauschkorrelation (Moran-Effekt). Es existiert aber noch keine systematische Untersuchung des Verhaltens nichtlinearer Abbildungen unter dem Einfluss korrelierten Rauschens. Deshalb wird im ersten Teils dieser Arbeit systematisch die rauschinduzierte Korrelation zweier logistischer Abbildungen in den verschiedenen dynamischen Bereichen untersucht. Für kleine Rauschintensitäten wird analytisch gezeigt, dass die Korrelation von quadratischen Abbildungen im Fixpunktbereich immer kleiner oder gleich der Rauschkorrelation ist. Im Periode-2 Bereich beschreibt ein Markov-Modell qualitativ die wichtigsten dynamischen Eigenschaften. Weiterhin werden zwei unterschiedliche Mechanismen vorgestellt, die dazu führen, dass die beiden ungekoppelten Systeme stärker als ihre Umwelt korreliert sein können. Dabei wird der neue Effekt der "correlation resonance" aufgezeigt, d. h. es ergibt sich eine Resonanzkurve der Korrelation in Abbhängkeit von der Rauschstärke. Im zweiten Teil der Arbeit wird eine automatische Kontroll-Methode präsentiert, die es ermöglicht sehr unterschiedliche Systeme auf robuste Weise in Phase zu synchronisieren. Die Methode ist angelehnt an Phase-locked-Loops und basiert auf einer Rückkopplungsschleife durch einen speziellen Regler, der es erlaubt die Phasen der kontrollierten Systeme zu ändern. Die Effektivität dieser Methode zur Kontrolle der Phasensynchronisierung wird an regulären Oszillatoren und an Nahrungskettenmodellen demonstriert. KW - Markov-Prozess KW - Kontrolltheorie KW - Synchronisierung KW - Nichtlineare Dynamik KW - Theoretische Ökologie KW - Moran-Effekt KW - Stochastische Prozesse KW - Moran effect KW - Markov process KW - Theoretical ecology KW - Synchronisation KW - Nonlinear Dynamics Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-10826 ER - TY - THES A1 - Allefeld, Carsten T1 - Phase synchronization analysis of event-related brain potentials in language processing N2 - Das Forschungsthema Synchronisation bildet einen Schnittpunkt von Nichtlinearer Dynamik und Neurowissenschaft. So hat zum einen neurobiologische Forschung gezeigt, daß die Synchronisation neuronaler Aktivität einen wesentlichen Aspekt der Funktionsweise des Gehirns darstellt. Zum anderen haben Fortschritte in der physikalischen Theorie zur Entdeckung des Phänomens der Phasensynchronisation geführt. Eine dadurch motivierte Datenanalysemethode, die Phasensynchronisations-Analyse, ist bereits mit Erfolg auf empirische Daten angewandt worden. Die vorliegende Dissertation knüpft an diese konvergierenden Forschungslinien an. Ihren Gegenstand bilden methodische Beiträge zur Fortentwicklung der Phasensynchronisations-Analyse, sowie deren Anwendung auf ereigniskorrelierte Potentiale, eine besonders in den Kognitionswissenschaften wichtige Form von EEG-Daten. Die methodischen Beiträge dieser Arbeit bestehen zum ersten in einer Reihe spezialisierter statistischer Tests auf einen Unterschied der Synchronisationsstärke in zwei verschiedenen Zuständen eines Systems zweier Oszillatoren. Zweitens wird im Hinblick auf den viel-kanaligen Charakter von EEG-Daten ein Ansatz zur multivariaten Phasensynchronisations-Analyse vorgestellt. Zur empirischen Untersuchung neuronaler Synchronisation wurde ein klassisches Experiment zur Sprachverarbeitung repliziert, in dem der Effekt einer semantischen Verletzung im Satzkontext mit demjenigen der Manipulation physischer Reizeigenschaften (Schriftfarbe) verglichen wird. Hier zeigt die Phasensynchronisations-Analyse eine Verringerung der globalen Synchronisationsstärke für die semantische Verletzung sowie eine Verstärkung für die physische Manipulation. Im zweiten Fall läßt sich der global beobachtete Synchronisationseffekt mittels der multivariaten Analyse auf die Interaktion zweier symmetrisch gelegener Gehirnareale zurückführen. Die vorgelegten Befunde zeigen, daß die physikalisch motivierte Methode der Phasensynchronisations-Analyse einen wesentlichen Beitrag zur Untersuchung ereigniskorrelierter Potentiale in den Kognitionswissenschaften zu leisten vermag. N2 - The topic of synchronization forms a link between nonlinear dynamics and neuroscience. On the one hand, neurobiological research has shown that the synchronization of neuronal activity is an essential aspect of the working principle of the brain. On the other hand, recent advances in the physical theory have led to the discovery of the phenomenon of phase synchronization. A method of data analysis that is motivated by this finding - phase synchronization analysis - has already been successfully applied to empirical data. The present doctoral thesis ties up to these converging lines of research. Its subject are methodical contributions to the further development of phase synchronization analysis, as well as its application to event-related potentials, a form of EEG data that is especially important in the cognitive sciences. The methodical contributions of this work consist firstly in a number of specialized statistical tests for a difference in the synchronization strength in two different states of a system of two oscillators. Secondly, in regard of the many-channel character of EEG data an approach to multivariate phase synchronization analysis is presented. For the empirical investigation of neuronal synchronization a classic experiment on language processing was replicated, comparing the effect of a semantic violation in a sentence context with that of the manipulation of physical stimulus properties (font color). Here phase synchronization analysis detects a decrease of global synchronization for the semantic violation as well as an increase for the physical manipulation. In the latter case, by means of the multivariate analysis the global synchronization effect can be traced back to an interaction of symmetrically located brain areas.
The findings presented show that the method of phase synchronization analysis motivated by physics is able to provide a relevant contribution to the investigation of event-related potentials in the cognitive sciences. T2 - Phase synchronization analysis of event-related brain potentials in language processing KW - Synchronisation KW - EEG KW - Sprachverarbeitung KW - Multivariate Analyse KW - synchronization KW - EEG KW - language processing KW - multivariate analysis Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001873 ER - TY - THES A1 - Romano Blasco, M. Carmen T1 - Synchronization analysis by means of recurrences in phase space N2 - Die tägliche Erfahrung zeigt uns, daß bei vielen physikalischen Systemen kleine Änderungen in den Anfangsbedingungen auch zu kleinen Änderungen im Verhalten des Systems führen. Wenn man z.B. das Steuerrad beim Auto fahren nur ein wenig zur Seite dreht, unterscheidet sich die Richtung des Wagens auch nur wenig von der ursprünglichen Richtung. Aber es gibt auch Situationen, für die das Gegenteil dieser Regel zutrifft. Die Folge von Kopf und Zahl, die wir erhalten, wenn wir eine Münze werfen, zeigt ein irreguläres oder chaotisches Zeitverhalten, da winzig kleine Änderungen in den Anfangsbedingungen, die z.B. durch leichte Drehung der Hand hervorgebracht werden, zu vollkommen verschiedenen Resultaten führen. In den letzten Jahren hat man sehr viele nichtlineare Systeme mit schnellen Rechnern untersucht und festgestellt, daß eine sensitive Abhängigkeit von den Anfangsbedingungen, die zu einem chaotischen Verhalten führt, keinesfalls die Ausnahme darstellt, sondern eine typische Eigenschaft vieler Systeme ist. Obwohl chaotische Systeme kleinen Änderungen in den Anfangsbedingungen gegenüber sehr empfindlich reagieren, können sie synchronisieren wenn sie durch eine gemeinsame äußere Kraft getrieben werden, oder wenn sie miteinander gekoppelt sind. Das heißt, sie vergessen ihre Anfangsbedingungen und passen ihre Rhythmen aneinander. Diese Eigenschaft chaotischer Systeme hat viele Anwendungen, wie z.B. das Design von Kommunikationsgeräte und die verschlüsselte Übertragung von Mitteilungen. Abgesehen davon, findet man Synchronisation in natürlichen Systemen, wie z.B. das Herz-Atmungssystem, raumverteilte ökologische Systeme, die Magnetoenzephalographische Aktivität von Parkinson Patienten, etc. In solchen komplexen Systemen ist es nicht trivial Synchronisation zu detektieren und zu quantifizieren. Daher ist es notwendig, besondere mathematische Methoden zu entwickeln, die diese Aufgabe erledigen. Das ist das Ziel dieser Arbeit. Basierend auf dergrundlegenden Idee von Rekurrenzen (Wiederkehr) von Trajektorien dynamischer Systeme, sind verschiedene Maße entwickelt worden, die Synchronisation in chaotischen und komplexen Systemen detektieren. Das Wiederkehr von Trajektorien erlaubt uns Vorhersagen über den zukünftigen Zustand eines Systems zu treffen. Wenn man diese Eigenschaft der Wiederkehr von zwei interagierenden Systemen vergleicht, kann man Schlüsse über ihre dynamische Anpassung oder Synchronisation ziehen. Ein wichtiger Vorteil der Rekurrenzmaße für Synchronisation ist die Robustheit gegen Rauschen und Instationariät. Das erlaubt eine Synchronisationsanalyse in Systemen durchzuführen, die bisher nicht darauf untersucht werden konnten. N2 - This work deals with the connection between two basic phenomena in Nonlinear Dynamics: synchronization of chaotic systems and recurrences in phase space. Synchronization takes place when two or more systems adapt (synchronize) some characteristic of their respective motions, due to an interaction between the systems or to a common external forcing. The appearence of synchronized dynamics in chaotic systems is rather universal but not trivial. In some sense, the possibility that two chaotic systems synchronize is counterintuitive: chaotic systems are characterized by the sensitivity ti different initial conditions. Hence, two identical chaotic systems starting at two slightly different initial conditions evolve in a different manner, and after a certain time, they become uncorrelated. Therefore, at a first glance, it does not seem to be plausible that two chaotic systems are able to synchronize. But as we will see later, synchronization of chaotic systems has been demonstrated. On one hand it is important to investigate the conditions under which synchronization of chaotic systems occurs, and on the other hand, to develop tests for the detection of synchronization. In this work, I have concentrated on the second task for the cases of phase synchronization (PS) and generalized synchronization (GS). Several measures have been proposed so far for the detection of PS and GS. However, difficulties arise with the detection of synchronization in systems subjected to rather large amounts of noise and/or instationarities, which are common when analyzing experimental data. The new measures proposed in the course of this thesis are rather robust with respect to these effects. They hence allow to be applied to data, which have evaded synchronization analysis so far. The proposed tests for synchronization in this work are based on the fundamental property of recurrences in phase space. T2 - Synchronization analysis by means of recurrences in phase space KW - Synchronisation KW - Wiederkehrdiagramme KW - Chaos KW - Zeitreihenanalyse KW - Synchronization KW - Recurrence Plots KW - Chaos KW - Data Analysis Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001756 ER - TY - THES A1 - Montbrió i Fairen, Ernest T1 - Synchronization in ensembles of nonisochronous oscillators N2 - Diese Arbeit analysiert Synchronisationsphaenomene, die in grossen Ensembles von interagierenden Oszillatoren auftauchen. Im speziellen werden die Effekte von Nicht-Isochronizitaet (die Abhaengigkeit der Frequenz von der Amplitude des Oszillators) auf den makroskopischen Uebergang zur Synchronisation im Detail studiert. Die neu gefundenen Phaenomene (Anomale Synchronisation) werden sowohl in Populationen von Oszillatoren als auch zwischen Oszillator-Ensembles untersucht. N2 - This thesis analyses synchronization phenomena occurring in large ensembles of interacting oscillatory units. In particular, the effects of nonisochronicity (frequency dependence on the oscillator's amplitude) on the macroscopic transition to synchronization are studied in detail. The new phenomena found (Anomalous Synchronization) are investigated in populations of oscillators as well as between oscillator's ensembles. T2 - Synchronization in ensembles of nonisochronous oscillators KW - Synchronisation KW - Oszillatoren KW - Populationen KW - Anomal KW - Nicht-Isochronizität KW - Synchronization KW - Oscillators KW - Populations KW - Anomalous KW - Nonisochronicity Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001492 ER - TY - THES A1 - Ahlers, Volker T1 - Scaling and synchronization in deterministic and stochastic nonlinear dynamical systems N2 - Gegenstand dieser Arbeit ist die Untersuchung universeller Skalengesetze, die in gekoppelten chaotischen Systemen beobachtet werden. Ergebnisse werden erzielt durch das Ersetzen der chaotischen Fluktuationen in der Störungsdynamik durch stochastische Prozesse. Zunächst wird ein zeitkontinuierliches stochastisches Modell fürschwach gekoppelte chaotische Systeme eingeführt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsstärke (coupling sensitivity of chaos) zu untersuchen. Mit Hilfe der Fokker-Planck-Gleichung werden Skalengesetze hergeleitet, die von Ergebnissen numerischer Simulationen bestätigt werden. Anschließend wird der neuartige Effekt der vermiedenen Kreuzung von Lyapunov-Exponenten schwach gekoppelter ungeordneter chaotischer Systeme beschrieben, der qualitativ der Abstoßung zwischen Energieniveaus in Quantensystemen ähnelt. Unter Benutzung der für die coupling sensitivity of chaos gewonnenen Skalengesetze wird ein asymptotischer Ausdruck für die Verteilungsfunktion kleiner Abstände zwischen Lyapunov-Exponenten hergeleitet und mit Ergebnissen numerischer Simulationen verglichen. Schließlich wird gezeigt, dass der Synchronisationsübergang in starkgekoppelten räumlich ausgedehnten chaotischen Systemen einem kontinuierlichen Phasenübergang entspricht, mit der Kopplungsstärke und dem Synchronisationsfehler als Kontroll- beziehungsweise Ordnungsparameter. Unter Benutzung von Ergebnissen numerischer Simulationen sowie theoretischen Überlegungen anhand einer partiellen Differentialgleichung mit multiplikativem Rauschen werden die Universalitätsklassen der zwei beobachteten Übergangsarten bestimmt (Kardar-Parisi-Zhang-Gleichung mit Sättigungsterm, gerichtete Perkolation). N2 - Subject of this work is the investigation of universal scaling laws which are observed in coupled chaotic systems. Progress is made by replacing the chaotic fluctuations in the perturbation dynamics by stochastic processes. First, a continuous-time stochastic model for weakly coupled chaotic systems is introduced to study the scaling of the Lyapunov exponents with the coupling strength (coupling sensitivity of chaos). By means of the the Fokker-Planck equation scaling relations are derived, which are confirmed by results of numerical simulations. Next, the new effect of avoided crossing of Lyapunov exponents of weakly coupled disordered chaotic systems is described, which is qualitatively similar to the energy level repulsion in quantum systems. Using the scaling relations obtained for the coupling sensitivity of chaos, an asymptotic expression for the distribution function of small spacings between Lyapunov exponents is derived and compared with results of numerical simulations. Finally, the synchronization transition in strongly coupled spatially extended chaotic systems is shown to resemble a continuous phase transition, with the coupling strength and the synchronization error as control and order parameter, respectively. Using results of numerical simulations and theoretical considerations in terms of a multiplicative noise partial differential equation, the universality classes of the observed two types of transition are determined (Kardar-Parisi-Zhang equation with saturating term, directed percolation). KW - Nichtlineare Dynamik KW - Chaostheorie KW - Stochastische Prozesse KW - Synchronisation KW - nonlinear dynamics KW - chaos KW - stochastic processes KW - synchronization Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000320 ER -