TY - THES A1 - Bhaskar, Thanga Bhuvanesh Vijaya T1 - Biomimetic layers of extracellular matrix glycoproteins as designed biointerfaces N2 - The goal of regenerative medicine is to guide biological systems towards natural healing outcomes using a combination of niche-specific cells, bioactive molecules and biomaterials. In this regard, mimicking the extracellular matrix (ECM) surrounding cells and tissues in vivo is an effective strategy to modulate cell behaviors. Cellular function and phenotype is directed by the biochemical and biophysical signals present in the complex 3D network of ECMs composed mainly of glycoproteins and hydrophilic proteoglycans. While cellular modulation in response to biophysical cues emulating ECM features has been investigated widely, the influence of biochemical display of ECM glycoproteins mimicking their presentation in vivo is not well characterized. It remains a significant challenge to build artificial biointerfaces using ECM glycoproteins that precisely match their presentation in nature in terms of morphology, orientation and conformation. This challenge becomes clear, when one understands how ECM glycoproteins self-assemble in the body. Glycoproteins produced inside the cell are secreted in the extra-cellular space, where they are bound to the cell membrane or other glycoproteins by specific interactions. This leads to elevated local concentration and 2Dspatial confinement, resulting in self-assembly by the reciprocal interactions arising from the molecular complementarity encoded in the glycoprotein domains. In this thesis, air-water (A-W) interface is presented as a suitable platform, where self-assembly parameters of ECM glycoproteins such as pH, temperature and ionic strength can be controlled to simulate in vivo conditions (Langmuir technique), resulting in the formation of glycoprotein layers with defined characteristics. The layer can be further compressed with surface barriers to enhance glycoprotein-glycoprotein contacts and defined layers of glycoproteins can be immobilized on substrates by horizontal lift and touch method, called Langmuir-Schäfer (LS) method. Here, the benefit of Langmuir and LS methods in achieving ECM glycoprotein biointerfaces with controlled network morphology and ligand density on substrates is highlighted and contrasted with the commonly used (glyco)protein solution deposition (SO) method on substrates. In general, the (glyco)protein layer formation by SO is rather uncontrolled, influenced strongly by (glyco)protein-substrate interactions and it results in multilayers and aggregations on substrates, while the LS method results in (glyco)proteins layers with a more homogenous presentation. To achieve the goal of realizing defined ECM layers on substrates, ECM glycoproteins having the ability to self-assemble were selected: Collagen-IV (Col-IV) and fibronectin (FN). Highly packed FN layer with uniform presentation of ligands was deposited on polydimethysiloxane VIII (PDMS) by LS method, while a heterogeneous layer was formed on PDMS by SO with prominent aggregations visible. Mesenchymal stem cells (MSC) on PDMS equipped with FN by LS exhibited more homogeneous and elevated vinculin expression and weaker stress fiber formation than on PDMS equipped with FN by SO and these divergent responses could be attributed to the differences in glycoprotein presentation at the interface. Col-IV are scaffolding components of specialized ECM called basement membranes (BM), and have the propensity to form 2D networks by self-polymerization associated with cells. Col- IV behaves as a thin-disordered network at the A-W interface. As the Col-IV layer was compressed at the A-W interface using trough barriers, there was negligible change in thickness (layer thickness ~ 50 nm) or orientation of molecules. The pre-formed organization of Col-IV was transferred by LS method in a controlled fashion onto substrates meeting the wettability criterion (CA ≤ 80°). MSC adhesion (24h) on PET substrates deposited with Col-IV LS films at 10, 15 and 20 mN·m-1 surface pressures was (12269.0 ± 5856.4) cells for LS10, (16744.2 ± 1280.1) cells for LS15 and (19688.3 ± 1934.0) cells for LS20 respectively. Remarkably, by selecting the surface areal density of Col-IV on the Langmuir trough on PET, there is a linear increase between the number of adherent MSCs and the Col-IV ligand density. Further, FN has the ability to self-stabilize and form 2D networks (even without compression) while preserving native β-sheet structure at the A-W interface on a defined subphase (pH = 2). This provides the possibility to form such layers on any vessel (even on standard six-well culture plates) and the cohesive FN layers can be deposited by LS transfer, without the need for expensive LB instrumentation. Multilayers of FN can be immobilized on substrates by this approach, as easily as Layer-by-Layer method, even without the need for secondary adlayer or activated bare substrate. Thus, this facile glycoprotein coating strategy approach is accessible to many researchers to realize defined FN films on substrates for cell culture. In conclusion, Langmuir and LS methods can create biomimetic glycoprotein biointerfaces on substrates controlling aspects of presentation such as network morphology and ligand density. These methods will be utilized to produce artificial BM mimics and interstitial ECM mimics composed of more than one ECM glycoprotein layer on substrates, serving as artificial niches instructing stem cells for cell-replacement therapies in the future. N2 - Ziel der regenerativen Medizin ist es, Regenerationsprozesse in biologischen Systemen mit Hilfe von nischenspezifischen Zellen, bioaktiven Molekülen und Biomaterialien zu modulieren. In diesem Zusammenhang ist die Nachahmung der extrazellulären Matrix (ECM), die Zellen und Gewebe in vivo umgibt, eine wirksame Strategie zur Modulation des Zellverhaltens. Die zelluläre Funktion und der Phänotyp werden durch die biochemischen und biophysikalischen Signale gesteuert, die in dem komplexen 3D-Netzwerk von ECMs vorhanden sind, welches hauptsächlich aus Glykoproteinen und hydrophilen Proteoglykanen besteht. Während die zelluläre Modulation als Reaktion auf biophysikalische Signale, die ECM-Merkmale nachahmen, umfassend untersucht wurde, ist der Einfluss der biochemischen Charakterisierung von ECM-Glykoproteinen, die deren Darstellung in vivo nachahmen, nicht gut charakterisiert. Es bleibt eine bedeutende Herausforderung, künstliche Biogrenzflächen mit ECM-Glykoproteinen zu schaffen, die in Bezug auf Morphologie, Orientierung und Konformation genau ihrer Darstellung in der Natur entsprechen. Diese Herausforderung wird deutlich, wenn man versteht, wie sich die ECM-Glykoproteine im Körper selbst zusammensetzen. Glykoproteine, die im Inneren der Zelle produziert werden, werden im extrazellulären Raum ausgeschieden, wo sie durch spezifische Interaktionen an die Zellmembran oder andere Glykoproteine gebunden werden. Dies führt zu einer erhöhten lokalen Konzentration und zweidimensionalen Raumbegrenzung, was durch die wechselseitigen Wechselwirkungen, die sich aus der in den Glykoprotein-Domänen kodierten molekularen Komplementarität ergeben, zur Selbstorganisation führt. In dieser Arbeit wird die Luft-Wasser (A-W)-Grenzfläche als eine geeignete Umgebung vorgestellt, mit der die Selbstorganisationsparameter von ECM-Glykoproteinen wie pH-Wert, Temperatur und Ionenstärke kontrolliert werden können, um in vivo-Bedingungen zu simulieren (Langmuir-Technik), was zur Bildung von Glykoproteinschichten mit definierten Eigenschaften führt. Die Schicht kann mit Oberflächenbarrieren weiter komprimiert werden, um die Glykoprotein-Glykoprotein-Kontakte zu verstärken, und definierte Schichten von Glykoproteinen können auf Substraten durch eine horizontale Hebe- und Berührungsmethode, sie sogenannte Langmuir-Schäfer (LS)-Methode, immobilisiert werden. Hier wird der Vorteil der Langmuir- und LS-Methode bei der Erzielung von ECM-Glykoprotein-Biogrenzflächen mit kontrollierter Netzwerkmorphologie und Ligandendichte auf Oberflächen hervorgehoben und mit der üblicherweise verwendeten Methode der (Glyko)Protein-Lösungsabscheidung (SO) auf Oberflächen gegenübergestellt. Im Allgemeinen ist die (Glyko)ProteinX Schichtbildung durch SO eher unkontrolliert, wird stark durch (Glyko)Protein-Substrat- Wechselwirkungen beeinflusst und führt zu Mehrfachschichten und Ansammlungen auf Oberflächen, während die LS-Methode zu (Glyko)Protein-Schichten mit einer homogeneren Darstellung führt. Um definierte ECM-Schichten auf Oberflächen zu erzeugen, wurden ECM-Glykoproteine mit der Fähigkeit zur Selbstorganisation ausgewählt: Kollagen-IV (Col-IV) und Fibronektin (FN). Eine dicht gepackte FN-Schicht mit gleichmäßiger Verteilung der Liganden wurde mit der LSMethode auf Polydimethysiloxan (PDMS) aufgetragen, während auf PDMS mit SO eine heterogene Schicht mit klar erkennbaren Verdichtungen gebildet wurde. Mesenchymale Stammzellen (MSC) auf PDMS, denen FN nach der LS-Methode hinzugefügt wurde, wiesen eine homogenere und erhöhte Vinculin-Expression und eine schwächere Stressfaserbildung auf als MSC Stammzellen auf PDMS, dem FN nach der SO-Methode hinzugefügt wurde, und diese verschiedenen Reaktionen konnten auf die Unterschiede in der Glykoprotein-Verteilung an der Grenzfläche zurückgeführt werden. Col-IV ist eine Komponente spezialisierter ECMs, die Basalmembranen (BM) genannt werden, und neigen zur Bildung von 2D-Netzwerke durch Selbstpolymerisation, die mit Zellen assoziiert sind. Col-IV verhält sich wie ein dünnes ungeordnetes Netzwerk an der A-WGrenzfläche. Während die Col-IV-Schicht an der A-W-Grenzfläche mit Hilfe von Trogbarrieren zusammengerückt wurde, gab es eine vernachlässigbare Änderung der Dicke (Schichtdicke ~ 50 nm) oder der Orientierung der Moleküle. Die vorgeformte Organisation von Col-IV wurde mit der LS-Methode kontrolliert auf Oberflächen aufgetragen, die das Kriterium der Benetzbarkeit erfüllten (CA ≤ 80°). Die MSC-Adhäsion (24h) auf Polyethylenterephthalat (PET)-Oberflächen, die mit Col-IV LS-Folien bei Oberflächendrücken von 10, 15 und 20 mN·m-1 aufgebracht wurden, waren (12269,0 ± 5856,4) Zellen für LS10, (16744,2 ± 1280,1) Zellen für LS15 (19688,3 ± 1934,0) Zellen für LS20. Bemerkenswert ist dabei, dass durch die Auswahl der Oberflächen-Flächendichte von Col-IV am Langmuir-Trog auf PET ein linearer Anstieg zwischen der Anzahl der adhärenten MSCs und der Col-IV-Ligandendichte erfolgt. Auch FN die Fähigkeit, sich selbst zu stabilisieren und 2D-Netzwerke zu bilden (sogar ohne Kompression), während die native β-Faltblattstruktur an der A-W-Grenzfläche auf einer definierten Subphase (pH = 2) erhalten bleibt. Dies bietet die Möglichkeit, solche Schichten auf jedem beliebigen Gefäß (sogar auf Platten mit Standard-Six-Well-Kulturen) zu bilden, und die kohäsiven FN-Schichten können durch LS-Transfer abgelagert werden, ohne dass eine teure LB-Instrumentierung erforderlich ist. Mehrfachschichten aus FN können auf diese Weise XI auf Oberflächen immobilisiert werden, genauso einfach wie bei der Layer-by-Layer-Methode, auch ohne die Notwendigkeit einer zweiten adsorbierenden Schicht oder einer aktivierten blanken Oberfläche. Somit ist dieser Ansatz einer einfachen Glykoprotein- Beschichtungsstrategie vielen Forschern zugänglich, um definierte FN-Filme auf Oberflächen für die Zellkultur zu realisieren. Zusammenfassend lässt sich sagen, dass Langmuir- und LSMethoden biomimetische Glykoprotein-Bioschnittstellen auf Oberflächen erzeugen können, die makroskopische Darstellungen wie Netzwerkmorphologie und Ligandendichte kontrollieren. Diese Methoden werden genutzt, um künstliche BM und ECM zu generieren, die aus mehr als einer Glykoproteinschicht bestehen. Diese können dann als künstliche Nischen für Stammzellen, die in zukünftigen Zellersatztherapien zum Einsatz kommen könnte. KW - Extracellular Matrix KW - Biomimetics KW - Glycoproteins KW - Langmuir-Schaefer method KW - Designed Biointerfaces KW - Extrazelluläre Matrix KW - Biomimetik KW - Glykoproteine KW - Langmuir-Schäfer-Methode KW - Designte Biointerface Y1 - 2020 ER - TY - THES A1 - Cao, Qian T1 - Graphitic carbon nitride and polymer hybrid materials BT - a promising combination for advanced properties N2 - Advanced hybrid materials are recognized as one of the most significant enablers for new technologies, which holds true especially on the quest for sustainable energy sources and energy production schemes (e.g., semiconductor based photocatalytic materials). Usually, a single component is far from meeting all the demands needed for these advanced applications. Hybrid materials are composed of at least two components commonly an inorganic and an organic material on the molecular level, which feature novel properties exceeding the sum of the individual parts and might be the milestones of next-generation applications. This dissertation aims to provide novel combinations of the metal-free semiconductor graphitic carbon nitride (g-C3N4) with polymers to obtain materials with advanced properties and applications. Visible light constitutes the core of the present work as it is the only energy source utilized either in synthesis or in the application process. In the area of applications by combination of g-C3N4 and polymers, two different hybrids were thoroughly elucidated, i.e.. their design and construction as well as potential application in photocatalysis. Novel soft 3D liquid objects were formed via charge-interaction driven interfacial jamming between polyelectrolytes in aqueous environment and colloidal dispersions of g-C3N4 in edible sunflower oil. As such, stable liquid objects could be molded into specific shapes and utilized for photodegradation of organic dyes in water. Furthermore, the grafting of polymers onto g-C3N4 was investigated. Allyl-end functionalized polymers were grafted onto g-C3N4 by a photoinitiated process to yield g-C3N4 with versatile and improved properties, e.g. advanced dispersibility enabling processing via spin coating. As g-C3N4 produces radicals under visible light irradiation, which is of significant interest for polymer science, g-C3N4 containing polymer latex and macrogel beads (MGB) were synthesized by emulsion photopolymerization and inverse suspension photopolymerization, respectively. A well-controlled emulsion photopolymerization process via g-C3N4 initiation was designed, which features synthesis of well-defined and cross-linked polymer particles. Furthermore, the polymerization process was investigated thoroughly, indicating an ad-layer polymerization in early stages of the process. The utilization of functionalized g-C3N4 allowed the polymerization of various monomer types. Moreover, g-C3N4 was utilized as photoinitiator in hydrogel MGB formation. The formed MGB properties could be tailored via process design, e.g. stirring rate, cross-linker content and g-C3N4 content. Finally, MGBs were introduced as photocatalyst for waste water remediation, i.e. the degradation of Rhodamine B in aqueous solution was studied. The present thesis therefore builds a bridge between g-C3N4 and polymers and provides strategies for hybrid material formation. Furthermore, several potential applications are revealed with significant implications for photocatalysis, polymerization processes and polymer materials. KW - Graphitic carbon nitride KW - Hybrid materials synthesis KW - Polymers KW - Photopolymerization Y1 - 2020 ER - TY - THES A1 - Cataldo, Vincenzo Alessandro T1 - Design and synthesis of alkylating ionic liquids and their application in synthesis, materials and proteomics Y1 - 2020 ER - TY - THES A1 - Cerdá Doñate, Elisa T1 - Microfluidics for the study of magnetotactic bacteria towards single-cell analysis N2 - Magnetotactic bacteria comprise a heterogeneous group of Gram negative bacteria which share the ability to synthesise intracellular magnetic nanoparticles surrounded by a lipid bilayer, known as magnetosomes, which are arranged in linear chains. The bacteria exert a unique level of control onto the biomineralization of these nanoparticles, which is seen in the controlled size and shape they have. These characteristics have attracted great attention on understanding the process by which the bacteria synthesise the magnetosomes. Moreover, the magnetosome chain impart the bacteria with a net magnetic dipole which makes them susceptible to interact with magnetic fields and thus orient with the Earth’s magnetic field. This feature has attracted as well much interest to understand how the swimming motility of these microorganisms is affected by the presence of magnetic fields. Most of the studies performed in these bacteria so far have been conducted in the traditional manner using large populations of cells. Such studies have the disadvantage of averaging many different individuals with heterogeneous behaviours and fail to consider individual variations. In addition, in large populations each bacterium will be subjected to a different microenvironment that will influence the bacterial behaviour, but which cannot be defined using these traditional methods. In this thesis, different microfluidic platforms are proposed to overcome these limitations and to offer the possibility to study magnetotactic bacteria in defined environments and down to a single-cell resolution. First, a sediment-like microfluidic platform is presented with the purpose of mimicking the porous environment they bacteria naturally dwell in. The platform allows to observe via transmitted light microscopy that bacterial navigation in crowded environments is enhanced by the Earth’s magnetic field strengths (B = 50 μT) rather than by null (B = 0 μT) or higher magnetic fields (B = 500 μT). Second, a microfluidic system to confine single-bacterial cells in physically defined environments is presented. The system allows to study via transmitted light microscopy the interplay between wall curvature, magnetic fields and bacterial speed affect the motion of a confined bacterium, and shows how bacterial trajectories depend on those three parameters. Third, a microfluidic platform to conduct semi in vivo magnetosome nucleation with a single-cell resolution via X-ray fluorescence is fabricated. It is shown that signal arising from magnetosome full chains can be observed individually in each bacterium. Finally, the iron uptake kinetics of a single bacterium are studied via a fluorescent reporter through confocal microscopy. Two different approaches are used for this: one of the previously mentioned platforms, as well as giant lipid vesicles. It is observed how iron uptake rates vary between cells, as well as how these rates are consistent with magnetosome formation taking place within some hours. The present thesis shows therefore how microfluidic technologies can be implemented for the study of magnetotactic bacteria at different degrees, and the level of resolution that can be attained by going into the single- cell scale.
 N2 - Magnetotaktische Bakterien gehören einer heterogenen Gruppe gramnegativer Bakterien an, welche die Fähigkeit zur Synthese intrazellulärer magnetischer Nanopartikel teilen. Diese Partikel, genannt Magnetosomen, sind von einer Doppellipidschicht umgeben und ordnen sich in linearen Ketten an. Die Bakterien haben ein einzigartiges Maß an Kontrolle über die Biomineralisation dieser Nanopartikel, welche sich in der genau bestimmten Größe und Form zeigt. Diese besonderen Eigenschaften haben die Aufmerksamkeit auf ein besseres Verständnis der Magnetosomensynthese durch die Bakteriengezogen. Darüber hinaus besitzen die Bakterien durch die Magnetosomenkette ein magnetisches Dipolmoment, welches sie befähigt auf ein Magnetfeld zu reagieren, wodurch sie sich im Magnetfeld der Erde ausrichten können. Auch diese Eigenschaft hat großes Interesse geweckt, besonders um den Einfluss eines Magnetfeldes auf das Schwimmverhalten der Mikroorganismen besser zu verstehen. Die meisten bisherigen Studien an diesen Organismen wurden in klassischen Systemen mit großen Populationen durchgeführt. Solche Studien haben den Nachteil, dass das heterogene Verhalten vieler verschiedener Individuen gemittelt wird und daher individuelle Variationen nicht berücksichtigt werden. Zusätzlich ist jedes einzelne Bakterium einer großen Population einer anderen Mikroumgebung ausgesetzt, welche sein Verhalten beeinflusst, das aber durch die Verwendung traditioneller Methoden nicht erfasst werden kann. In dieser Arbeit werden verschiedene mikrofluidische Plattformen vorgestellt, um diese Einschränkungen zu überwinden und die Möglichkeit zu bieten, sogar einzelne magnetotaktische Bakterien in einer definierten Umgebung studieren zu können. Als erstes wird eine Sediment-ähnliche mikrofluidische Plattform vorgestellt, die den Zweck hat, die natürliche poröse Umgebung der Bakterien zu imitieren. Die Plattform erlaubt es mit Hilfe von Durchlichtmikroskopie zu sehen, dass Bakterien in einer gedrängten Umgebung eine verbesserte Navigation im Bereich der Erdmagnetfeldstärke (B = 50 μT) haben, im Vergleich zu keinem (B = 0 μT) oder einem höheren Magnetfeld 
 (B = 50μT). Zweitens wurde ein mikrofluidisches System zum Eingrenzen einzelner Bakterien in einer physisch definierten Umgebung entwickelt. Das System erlaubt mit Hilfe von Durchlichtmikroskopie die Untersuchung des Einflusses und des Zusammenspiels von Wandkrümmung, Magnetfeld und Bakteriengeschwindigkeit auf die Bewegung eines eingegrenzten Bakteriums und zeigt, wie die Bewegungspfade der Bakterien von diesen drei Faktoren abhängen. Drittens wurde eine mikrofluidische Plattform hergestellt, die die Durchführung von semi in-vivo Magnetosomenkeimbildung mit einer Auflösung von einzelnen Zellen mittels Röntgenfluoreszenz ermöglicht. Signale, welche von einer kompletten Magnetosomenkette herrühren, können in individuellen Bakterien beobachtet werden. Abschließend wurde die Kinetik der Eisenaufnahme eines einzelnen Bakteriums durch einen fluoreszierenden Reporter mit Hilfe von konfokaler Mikroskopie untersucht. Zwei verschiedenen Ansätze wurden dabei verwendet: eine der bereits vorgestellten Plattformen, sowie riesige Lipidvesikel. Es wurde beobachtet, dass die Eisenaufnahmerate zwischen verschiedenen Zellen variiert und wie sich damit übereinstimmend Magnetosomen innerhalb von Stunden bilden. Diese Arbeit zeigt damit wie mikrofluidische Technologien für die Untersuchung magnetotaktischer Bakterien in unterschiedlichen Bereichen eingesetzt werden können, und welches Level an Auflösung erreicht werden kann, indem mit einzelnen Zellen gearbeitet wird.
 KW - Magnetotactic bacteria KW - microfluidics KW - single-cell KW - iron KW - microscopy Y1 - 2020 ER - TY - THES A1 - Cruz Lemus, Saul Daniel T1 - Enhancing Efficiency of Inverted Perovskite Solar Cells BT - Employing Carbon Nitride and Poly (Ionic -Liquid)s as Interlayers N2 - Carbon nitride and poly(ionic liquid)s (PILs) have been successfully applied in various fields of materials science owing to their outstanding properties. This thesis aims at the successful application of these polymers as innovative materials in the interfaces of hybrid organic–inorganic perovskite solar cells. A critical problem in harnessing the full thermodynamic potential of halide perovskites in solar cells is the design and modification of interfaces to reduce carrier recombination. Therefore, the interface must be properly studied and improved. This work investigated the effect of applying carbon nitride and PILs on a perovskite surface on the device performance. The facile synthetic method for modifying carbon nitride with vinyl thiazole and barbituric acid (CMB-vTA) yields 2.3 nm layers when solution processing is performed using isopropanol. The nanosheets were applied as a metal-free electron transport layer in inverted perovskite solar cells. The application of carbon nitride layers (CMB-vTA) resulted in negligible current-voltage hysteresis with a high open circuit voltage (Voc) of 1.1 V and a short-circuit current (Jsc) of 20.28 mA cm-2, which afforded efficiencies of up to 17%. Thus, the successful implementation of a carbon nitride-based structure enabled good charge extraction with minimized interface recombination between the perovskite and PCBM. Similarly, PILs represent a new strategy of interfacial modification using an ionic polymer in an n-i-p perovskite architecture.. The application of PILs as an interfacial modifier resulted in solar cell devices with an extraordinarily high efficiency of 21.8% and a Voc of 1.17 V. The implementation reduced non-radiative recombination at the perovskite surface through defect passivation. Finally, our work proposes a novel method to efficiently suppress non-radiative charge recombination using the unexplored properties of carbon nitride and PILs in the solar cell field. Additionally, the method for interfacial modification has general applicability because of the simplicity of the post-treatment approach, and therefore has potential applicability in other solar cells. Thus, this work opens the door to a new class of materials to be implemented. Y1 - 2020 ER - TY - THES A1 - Giusto, Paolo T1 - Chemical vapor deposition of carbon-based thin films BT - from binary to ternary systems Y1 - 2020 ER - TY - THES A1 - Harmanli, İpek T1 - Towards catalytic activation of nitrogen in ionic liquid/nanoporous carbon interfaces for electrochemical ammonia synthesis N2 - Ammonia is a chemical of fundamental importance for nature`s vital nitrogen cycle. It is crucial for the growth of living organisms as well as food and energy source. Traditionally, industrial ammonia production is predominated by Haber- Bosch process (HBP) which is based on direct conversion of N2 and H2 gas under high temperature and high pressure (~500oC, 150-300 bar). However, it is not the favorite route because of its thermodynamic and kinetic limitations, and the need for the energy intense production of hydrogen gas by reforming processes. All these disfavors of HBP open a target to search for an alternative technique to perform efficient ammonia synthesis via electrochemical catalytic processes, in particular via water electrolysis, using water as the hydrogen source to save the process from gas reforming. In this study, the investigation of the interface effects between imidazolium-based ionic liquids and the surface of porous carbon materials with a special interest in the nitrogen absorption capability. As the further step, the possibility to establish this interface as the catalytically active area for the electrochemical N2 reduction to NH3 has been evaluated. This particular combination has been chosen because the porous carbon materials and ionic liquids (IL) have a significant importance in many scientific fields including catalysis and electrocatalysis due to their special structural and physicochemical properties. Primarily, the effects of the confinement of ionic liquid (EmimOAc, 1-Ethyl-3-methylimidazolium acetate) into carbon pores have been investigated. The salt-templated porous carbons, which have different porosity (microporous and mesoporous) and nitrogen species, were used as model structures for the comparison of the IL confinement at different loadings. The nitrogen uptake of EmimOAc can be increased by about 10 times by the confinement in the pores of carbon materials compared to the bulk form. In addition, the most improved nitrogen absorption was observed by IL confinement in micropores and in nitrogen-doped carbon materials as a consequence of the maximized structural changes of IL. Furthermore, the possible use of such interfaces between EmimOAc and porous carbon for the catalytic activation of dinitrogen during the kinetically challenging NRR due to the limited gas absorption in the electrolyte, was examined. An electrocatalytic NRR system based on the conversion of water and nitrogen gas to ammonia at ambient operation conditions (1 bar, 25 °C) was performed in a setup under an applied electric potential with a single chamber electrochemical cell, which consists of the combination of EmimOAc electrolyte with the porous carbon-working electrode and without a traditional electrocatalyst. Under a potential of -3 V vs. SCE for 45 minutes, a NH3 production rate of 498.37 μg h-1 cm-2 and FE of 12.14% were achieved. The experimental observations show that an electric double-layer, which serves the catalytically active area, occurs between a microporous carbon material and ions of the EmimOAc electrolyte in the presence of sufficiently high provided electric potential. Comparing with the typical NRR systems which have been reported in the literature, the presented electrochemical ammonia synthesis approach provides a significantly higher ammonia production rate with a chance to avoid the possible kinetic limitations of NRR. In terms of operating conditions, ammonia production rate and the faradic efficiency without the need for any synthetic electrocatalyst can be resulted of electrocatalytic activation of nitrogen in the double-layer formed between carbon and IL ions. N2 - Ammoniak ist eine Chemikalie von grundlegender Bedeutung für den lebenswichtigen Stickstoffkreislauf der Natur. Es ist entscheidend für das Wachstum lebender Organismen sowie von Nahrungsmitteln und Energiequellen. Traditionell wird die industrielle Ammoniakproduktion nach dem Haber-Bosch-Verfahren (HBP) dominiert, das auf der direkten Umwandlung von N2- und H2-Gas unter hoher Temperatur und hohem Druck (~ 500 ° C, 150-300 bar) basiert. Aufgrund seiner thermodynamischen und kinetischen Einschränkungen und der Notwendigkeit einer energieintensiven Erzeugung von Wasserstoffgas durch Reformierungsprozesse ist dies jedoch nicht der bevorzugte Weg. All diese Nachteile von HBP eröffnen ein Ziel für die Suche nach einer alternativen Technik zur Durchführung einer effizienten Ammoniaksynthese über elektrochemische katalytische Prozesse, insbesondere durch Wasserelektrolyse, wobei Wasser als Wasserstoffquelle verwendet wird, um den Prozess vor einer Gasreformierung zu bewahren. In dieser Studie wurde die Untersuchung der Grenzflächeneffekte zwischen ionischen Flüssigkeiten auf Imidazoliumbasis und der Oberfläche poröser Kohlenstoffmaterialien mit besonderem Interesse an der Stickstoffabsorptionsfähigkeit untersucht. Als weiterer Schritt wurde die Möglichkeit geprüft, diese Grenzfläche als katalytisch aktiven Bereich für die elektrochemische N2-Reduktion zu NH3 zu etablieren. Diese besondere Kombination wurde gewählt, weil die porösen Kohlenstoffmaterialien und ionischen Flüssigkeiten (IL) aufgrund ihrer besonderen strukturellen und physikochemischen Eigenschaften in vielen wissenschaftlichen Bereichen, einschließlich Katalyse und Elektrokatalyse, eine bedeutende Bedeutung haben. In erster Linie wurden die Auswirkungen des Einschlusses von ionischer Flüssigkeit (EmimOAc, 1-Ethyl-3-methylimidazoliumacetat) in Kohlenstoffporen untersucht. Die porösen Kohlenstoffe mit Salzschablonen, die unterschiedliche Porosität (mikroporös und mesoporös) und Stickstoffspezies aufweisen, wurden als Modellstrukturen für den Vergleich des IL-Einschlusses bei unterschiedlichen Beladungen verwendet. Die Stickstoffaufnahme von EmimOAc kann durch den Einschluss in den Poren von Kohlenstoffmaterialien im Vergleich zur Massenform um das Zehnfache erhöht werden. Zusätzlich wurde die am besten verbesserte Stickstoffabsorption durch IL-Einschluss in Mikroporen und in stickstoffdotierten Kohlenstoffmaterialien als Folge der maximierten strukturellen Änderungen von IL beobachtet. Darüber hinaus wurde die mögliche Verwendung solcher Grenzflächen zwischen EmimOAc und porösem Kohlenstoff für die katalytische Aktivierung von Distickstoff während des kinetisch herausfordernden NRR aufgrund der begrenzten Gasabsorption im Elektrolyten untersucht. Ein elektrokatalytisches NRR-System, das auf der Umwandlung von Wasser und Stickstoffgas in Ammoniak bei Umgebungsbetriebsbedingungen (1 bar, 25 ° C) basiert, wurde in einem Aufbau unter einem angelegten elektrischen Potential mit einer elektrochemischen Einkammerzelle durchgeführt, die aus der Kombination von besteht EmimOAc-Elektrolyt mit poröser Kohlenstoff-Arbeitselektrode und ohne herkömmlichen Elektrokatalysator. Bei einem Potential von -3 V gegen SCE für 45 Minuten wurde eine NH3-Produktionsrate von 498,37 ug h & supmin; ¹ cm & supmin; ² und eine FE von 12,14% erreicht. Die experimentellen Beobachtungen zeigen, dass eine elektrische Doppelschicht, die dem katalytisch aktiven Bereich dient, zwischen einem mikroporösen Kohlenstoffmaterial und Ionen des EmimOAc-Elektrolyten in Gegenwart eines ausreichend hohen bereitgestellten elektrischen Potentials auftritt. Im Vergleich zu den typischen NRR-Systemen, über die in der Literatur berichtet wurde, bietet der vorgestellte Ansatz der elektrochemischen Ammoniaksynthese eine signifikant höhere Ammoniakproduktionsrate mit der Möglichkeit, die möglichen kinetischen Einschränkungen der NRR zu vermeiden. In Bezug auf die Betriebsbedingungen können die Ammoniakproduktionsrate und die Faradic-Effizienz ohne die Notwendigkeit eines synthetischen Elektrokatalysators aus der elektrokatalytischen Aktivierung von Stickstoff in der zwischen Kohlenstoff- und IL-Ionen gebildeten Doppelschicht resultieren. KW - Electrocatalysis KW - Ammonia KW - Ionic liquids KW - Nitrogen Physisorption KW - Porous carbon KW - Ammoniak KW - Elektrokatalyse KW - Ionische Flüssigkeiten KW - Stickstoff Physisorption KW - Poröser Kohlenstoff Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483591 ER - TY - THES A1 - Ilic, Ivan T1 - Design of sustainable cathodes for Li-ion batteries T1 - Design nachhaltiger Kathoden für Li-Ionen-Batterien BT - understanding the redox behaviour of guaiacyl and catecholic groups in lithium organic system N2 - In recent years people have realised non-renewability of our modern society which relays on spending huge amounts of energy mostly produced from fosil fuels, such as oil and coal, and the shift towards more sustainable energy sources has started. However, sustainable sources of energy, such as wind-, solar- and hydro-energy, produce primarily electrical energy and can not just be poured in canister like many fosil fuels, creating necessity for rechragable batteries. However, modern Li-ion batteries are made from toxic heavy metals and sustainable alternatives are needed. Here we show that naturally abundant catecholic and guaiacyl groups can be utilised to replace heavy metals in Li-ion batteries. Foremost vanillin, a naturally occurring food additive that can be sustainably synthesised from industrial biowaste, lignin, was utilised to synthesise materials that showed extraordinary performance as cathodes in Li-ion batteries. Furthermore, behaviour of catecholic and guiacyl groups in Li-ion system was compared, confirming usability of guiacayl containing biopolymers as cathodes in Li-ion batteries. Lastly, naturally occurring polyphenol, tannic acid, was incorporated in fully bioderived hybrid material that shows performance comparable to commercial Li-ion batteries and good stability. This thesis presents an important advancement in understanding of biowaste derived cathode materials for Li-ion batteries. Further research should be conducted to better understand behaviour of guaiacyl groups during Li-ion battery cycling. Lastly, challenges of incorporation of lignin, an industrial biowaste, have to be addressed and lignin should be incorporated as a cathode material in Li-ion batteries. N2 - Diese Dissertation untersucht, wie nachhaltige Kathoden (Kathodenmaterialien) für Lithium-Ionen-Batterien aus Holzabfällen hergestellt werden können. In den letzten Jahren hat die Menschheit erkannt, wie wenig nachhaltig unsere moderne Gesellschaft ist und große Mengen an Energie verbraucht, welche zum größten Teil aus fossilen Brennstoffen gewonnen werden. Daher versucht man jetzt die Energie aus hauptsächlich erneuerbaren Quellen wie Sonne und Wind zu gewinnen. Allerdings kann elektrische Energie nicht einfach wie Öl in einen Kanister gegossen werden, sondern muss in wieder aufladbaren Batterien gespeichert werden. In den letzten Jahren wurden Lithium-Ionen-Batterien entwickelt, die leistungsstark und allgegenwärtig sind, da sie zum Beispiel in Handys und sogar Autos Verwendung finden. Lithium-Ionen-Batterien verwenden jedoch Trägermaterialien aus giftigen Schwermetallen, die abgebaut werden müssen, was sich negativ auf die Umwelt auswirkt. In diesem Zusammenhang ist insbesondere das Schwermetall Kobalt zu erwähnen, welches in den meisten modernen Kathoden verwendet wird. Nach dem Bekanntwerden von Sklaverei und Kinderarbeit beim Kobaltabbau im Kongo, folgten große Kontroversen, da Kobalt praktisch in jedem Gerät führender Unternehmen wie zum Beispiel Apple und Microsoft zu finden ist. Idealerweise müssen wir von nicht erneuerbaren Schwermetallen zu erneuerbaren organischen Molekülen wechseln. Daher verwende ich in meiner Forschung Vanillin, ein Molekül, das hinsichtlich der Elektronenspeicherung ähnliche Eigenschaften wie Schwermetalle aufweist, jedoch viele Vorteile bietet. Erstens erkennt man Vanillin am spezifischen Geruch, da es einer der Hauptbestandteile von Vanille und daher ein natürlich vorkommendes Molekül ist. Zweitens kann es aus Holzabfällen oder aus Abfällen vieler Industrien hergestellt werden, die Holz als Rohstoff verwenden, wie beispielsweise der Papierindustrie. Durch milde chemische Reaktionen in Lösemitteln wie Wasser, Essig und Alkohol haben wir Vanillin zu einem Material modifiziert, welches hervorragende Eigenschaften zur Verwendung in Lithium-Ionen-Batterien hat und die bisher verwendeten Schwermetelle ersetzen kann. Diese Batterien wären somit erneuerbar und können uns der nachhaltigen Welt einen Schritt näher bringen. Darüber hinaus wurde Tanninsäure, ein natürlich vorkommendes Polymer in Holzrinde, verwendet, um vollständig aus Bioabfällen bestehende Batterien herzustellen. KW - biomass KW - electrochemistry KW - energy conversion KW - polymers KW - redox chemistry KW - Biomasse KW - Elektrochemie KW - Energieumwandlung KW - Polymere KW - Redoxchemie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483689 ER - TY - THES A1 - Knauf, Jan T1 - Synthesis of highly fluorinated precursors and their deposition conditions for self-assembled monolayers with defined small-scale surface structures as templates for the manipulation of wetting behavior N2 - "How Wenzel and Cassie were wrong" – this was the eye-catching title of an article published by Lichao Gao and Thomas McCarthy in 2007, in which fundamental interpretations of wetting behavior were put into question. The authors initiated a discussion on a subject, which had been generally accepted a long time ago and they showed that wetting phenomena were not as fully understood as imagined. Similarly, this thesis tries to put a focus on certain aspects of liquid wetting, which so far have been widely neglected in terms of interpretation and experimental proof. While the effect of surface roughness on the macroscopically observed wetting behavior is commonly and reliably interpreted according to the well-known models of Wenzel and Cassie/Baxter, the size-scale of the structures responsible for the surface's rough texture has not been of further interest. Analogously, the limits of these models have not been described and exploited. Thus, the question arises, what will happen when the size of surface structures is reduced to the size of the contacting liquid molecules itself? Are common methods still valid or can deviations from macroscopic behavior be observed? This thesis wants to create a starting point regarding these questions. In order to investigate the effect of smallest-scale surface structures on liquid wetting, a suitable model system is developed by means of self-assembled monolayer (SAM) formation from (fluoro)organic thiols of differing lengths of the alkyl chain. Surface topographies are created which rely on size differences of several Ångströms and exhibit surprising wetting behavior depending on the choice of the individual precursor system. Thus, contact angles are experimentally detected, which deviate considerably from theoretical calculations based on Wenzel and Cassie/Baxter models and confirm that sub-nm surface topographies affect wetting. Moreover, experimentally determined wetting properties are found to correlate well to an assumed scale-dependent surface tension of the contacting liquid. This behavior has already been described for scattering experiments taking into account capillary waves on the liquid surface induced by temperature and had been predicted earlier by theoretical calculations. However, the investigation of model surfaces requires the provision of suitable precursor molecules, which are not commercially available and opens up a door to the exotic chemistry of fluoro-organic materials. During the course of this work, the synthesis of long-chain precursors is examined with a particular focus put on oligomerically pure semi-fluorinated n-alkyl thiols and n-alkyl trichlorosilanes. For this, general protocols for the syntheses of the desired compounds are developed and product mixtures are assayed to be separated into fractions of individual chain lengths by fluorous-phase high-performance liquid chromatography (F-HPLC). The transition from model systems to technically more relevant surfaces and applications is initiated through the deposition of SAMs from long-chain fluorinated n-alkyl trichlorosilanes. Depositions are accomplished by a vapor-phase deposition process conducted on a pilot-scale set-up, which enables the exact control of relevant process parameters. Thus, the influence of varying deposition conditions on the properties of the final coating is examined and analyzed for the most important parameters. The strongest effect is observed for the partial pressure of reactive water vapor, which directly controls the extent of precursor hydrolysis during the deposition process. Experimental results propose that the formation of ordered monolayers rely on the amount of hydrolyzed silanol species present in the deposition system irrespective of the exact grade of hydrolysis. However, at increased amounts of species which are able to form cross-linked molecules due to condensation reactions, films deteriorate in quality. This effect is assumed to be caused by the introduction of defects within the film and the adsorption of cross linked agglomerates. Deposition conditions are also investigated for chain extended precursor species and reveal distinct differences caused by chain elongation. N2 - "How Wenzel and Cassie were wrong" - so lautete der Aufsehen erregende Titel eines 2007 von Lichao Gao und Thomas McCarthy veröffentlichten Artikels, in dem grundlegende Beschreibungen des Benetzungsverhaltens von Flüssigkeiten in Frage gestellt wurden. Die Autoren leiteten damit eine Diskussion über ein bereits lange als allgemein anerkannt angesehenes Thema ein und sie zeigten, dass Benetzungsphänomene nicht so vollständig aufgeklärt waren, wie zuvor angenommen. In ähnlicher Weise versucht diese Arbeit, einen Schwerpunkt auf bestimmte Aspekte der Flüssigkeitsbenetzung zu legen, die bisher in Bezug auf die Interpretation und den experimentellen Nachweis weitgehend vernachlässigt wurden. Während der Einfluss der Oberflächenrauigkeit auf das makroskopisch beobachtete Benetzungsverhalten nach den bekannten Modellen von Wenzel und Cassie/Baxter allgemein anerkannt ist, war die Größenordnung der Strukturen, die für die raue Textur der Oberfläche verantwortlich sind, nicht Gegenstand weiterer Betrachtungen. Analog dazu sind die Grenzen dieser Modelle bislang nicht beschrieben und untersucht worden. Daher stellt sich die Frage, was passiert, wenn die Größe der Oberflächenstrukturen auf die Größe der benetzenden Flüssigkeitsmoleküle reduziert wird. Sind gängige Methoden und Modelle noch gültig oder können Abweichungen vom makroskopischen Verhalten beobachtet werden? Die vorliegende Arbeit will einen Ausgangspunkt zu diesen Fragen schaffen. Um den Einfluss kleinster Oberflächenstrukturen auf die Flüssigkeitsbenetzung zu untersuchen, wird hierbei ein geeignetes Modellsystem selbstassemblierender Monolagen (self-assembled monolayers, SAM) aus (fluor-)organischen Thiolen unterschiedlicher Alkylkettenlänge entwickelt. Es entstehen Oberflächen-topographien, die auf Größenunterschieden von einigen Ångström beruhen und in Abhängigkeit von der Wahl des einzelnen Präkursorsystems ein überraschendes Benetzungsverhalten zeigen. So werden Kontaktwinkel gemessen, die erheblich von theoretischen Berechnungen auf der Basis von Wenzel- und Cassie/Baxter-Modellen abweichen und die bestätigen, dass bereits Oberflächentopographien im sub-nm-Bereich die Benetzung beeinflussen. Darüber hinaus wird gezeigt, dass experimentell ermittelte Benetzungseigenschaften gut mit einer angenommenen skalenabhängigen Oberflächenspannung der Kontaktflüssigkeit korrelieren. Dieses Verhalten wurde bereits für Streuexperimente unter Berücksichtigung von temperaturinduzierten Kapillarwellen auf der Flüssigkeitsoberfläche beschrieben und war zuvor durch theoretische Berechnungen vorhergesagt worden. Die Untersuchung der Modelloberflächen erfordert jedoch die Bereitstellung geeigneter Vorläufermoleküle, die kommerziell nicht erhältlich sind und eine Tür zur Chemie der fluororganischen Materialien öffnen. Im Rahmen dieser Arbeit wird die Synthese langkettiger Präursoren untersucht, wobei ein besonderer Schwerpunkt auf oligomerenreine, semifluorierte n-Alkylthiole und n Alkyltrichlorsilane gelegt wird. Dazu werden allgemeine Protokolle für die Synthesen der gewünschten Verbindungen entwickelt und Produktmischungen untersucht, um sie mit Hilfe der Fluorphasen-Hochleistungsflüssigkeitschromatographie (F-HPLC) in Fraktionen einzelner Kettenlängen aufzutrennen. Der Übergang von Modellsystemen zu technisch relevanteren Oberflächen und Anwendungen wird durch die Abscheidung von SAMs aus langkettigen fluorierten n Alkyltrichlorsilanen eingeleitet. Die Beschichtung erfolgt durch eine chemische Dampfphasenabscheidung (chemical vapor deposition, CVD), die die gezielte Steuerung und Kontrolle relevanter Prozessparameter ermöglicht. So wird der Einfluss unterschiedlicher Abscheidungsbedingungen auf die Eigenschaften der Beschichtung untersucht und für die wichtigsten Parameter analysiert. Die stärkste Wirkung wird für den Partialdruck des reaktiven Wasserdampfes beobachtet, der das Ausmaß der Hydrolyse der Präkursoren während des Abscheidungsprozesses direkt beeinflusst. Experimentelle Ergebnisse legen nahe, dass die Bildung geordneter Monolagen von der Menge der im Abscheidungssystem vorhandenen hydrolysierten Silanolspezies abhängt, unabhängig vom genauen Hydrolysegrad. Mit zunehmender Anzahl kondensierbarer Spezies, die in der Lage sind vernetzte Moleküle zu bilden, verschlechtern sich die Filme jedoch in ihrer Qualität. Es wird angenommen, dass dieser Effekt durch die Entstehung von Defekten innerhalb des Films und die Adsorption von vernetzten Agglomeraten verursacht wird. Die Abscheidebedingungen werden auch für kettenverlängerte Präkursoren untersucht. T2 - Synthese hochfluorierter Präkursoren und deren Abscheidebedingungen für selbstassemblierende Monolagen mit definierten kleinskaligen Oberflächenstrukturen als Modellsysteme für die Manipulation von Benetzungsverhalten KW - wetting KW - self-assembled monolayers KW - surface topography KW - hydrophobicity KW - Benetzung KW - selbstassemblierende Monolagen KW - Oberflächentopografie KW - Hydrophobizität KW - fluorous chemistry KW - Fluorchemie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473804 ER - TY - THES A1 - Kärgell, Martin T1 - Layer formation from perovskite nanoparticles with tunable optical and electronic properties N2 - Hybrid organic-inorganic perovskites have attracted attention in recent years, caused by the incomparable increase in efficiency in energy convergence, which implies the application as an absorber material for solar cells. A disadvantage of these materials is, among others, the instability to moisture and UV-radiation. One possible solution for these problems is the reduction of the size towards the nano world. With that nanosized perovskites are showing superior stability in comparison to e.g. perovskite layers. Additionally to this the nanosize even enables stable perovskite structures, which could not be achieved otherwise at room temperature. This thesis is separated into two major parts. The separation is done by the composition and the band gap of the material and at the same time the shape and size of the nanoparticles. Here the division is made by the methylammonium lead tribromide nanoplatelets and the caesium lead triiodide nanocubes. The first part is focusing on the hybrid organic-inorganic perovskite (methylammonium lead tribromide) nanoplatelets with a band gap of 2.35 eV and their thermal behaviour. Due to the challenging character of this material, several analysis methods are used to investigate the sub nano and nanostructures under the influence of temperature. As a result, a shift of phase-transition temperatures towards higher temperatures is observed. This unusual behaviour can be explained by the ligand, which is incorporated in the perovskite outer structure and adds phase-stability into the system. The second part of this thesis is focusing on the inorganic caesium lead triiodide nanocubes with a band gap of 1.83 eV. These nanocrystals are first investigated and compared by TEM, XRD and other optical methods. Within these methods, a cuboid and orthorhombic structure are revealed instead of the in literature described cubic shape and structure. Furthermore, these cuboids are investigated towards their self-assembly on a substrate. Here a high degree in self-assembly is shown. As a next step, the ligands of the nanocuboids are exchanged against other ligands to increase the charge carrier mobility. This is further investigated by the above-mentioned methods. The last section is dealing with the enhancement of the CsPbI3 structure, by incorporating potassium in the crystal structure. The results are suggesting here an increase in stability. N2 - Hybrid organisch-anorganisch Perowskite zeigten sich in den letzten Jahren, durch ihren unvergleichbaren Anstieg an Effizienz in der Energiekonversion, als herausragendes Material für die Anwendung als Solarzellen Absorbermaterial. Ein Nachteil dieser Materialien ist allerdings unteranderem ihre Instabilität gegenüber Feuchtigkeit und UV-Strahlung. Eine Möglichkeit, diese Herausforderungen zu meistern, bietet die Nanowelt. So zeigen Perowskitstrukturen in Nanogröße eine dem Schichten überlegene Stabilität. Des Weiteren sind durch die Nanogröße auch Verbindungen bei Raumtemperatur stabil, die als Schicht oder Einkristall nicht darzustellen sind. Diese Arbeit ist unterteilt in zwei Teile. Unterteilt nach Zusammensetzung, Bandlücke und Form der Nanopartikel, in Methylammonium Blei Tribromid Nanoplättchen und Cäsium Blei Triiodid Nanokuben. Im ersten Teil werden hybrid organisch-anorganische Perowskite (Methylammonium Blei tribromid) Nanoplättchen mit einer Bandlücke von 2.35 eV auf ihr thermisches Verhalten untersucht. Aufgrund der herausfordernden Eigenschaften der Nanomaterialien, werden mehrere Analysemethoden verwendet und sowohl die Subnanostruktur als auch die Nanostruktur unter Veränderung der Temperatur beobachtet. Dabei wird ein Verschub der Phasenübergangstemperatur zu höheren Temperaturen beobachtet. Erklärt werden kann dieses ungewöhnliche Verhalten durch die Berücksichtigung des organischen Liganden der Nanoplättchen, welcher einen Einfluß auf den Phasenübergang hat. Im zweiten Teil der Arbeit werden anorganische Perowskit (Cäsium Blei triodid) Nanokuben mit einer Bandlücke von 1.83 eV untersucht. Diese werden als Erstes mittels TEM, XRD und optischen Analysemethoden untersucht und verglichen. Als Resultat stellen sich die Kuben, als Quader einer orthorhombischen Phase heraus. Anschließend erfolgt eine Untersuchung der Selbstanordnung der Schichten auf einem Substrat, welche einen hohen Grad der Selbstanordnung zeigt. Um die Ladungsträgermobilität in den Schichten zu erhöhen, werden verschiedene Ligandenaustauschreaktionen durchgeführt und diese mittels der oben genannten Methoden untersucht. Dabei konnte ein Anstieg der Ladungsträgermobilität um das Sechsfache im Vergleich zur Literatur beobachtet werden. Im letzten Teil wird versucht die Stabilität der Nanokristalle, durch das Einbinden von Kalium in die Perowskitstruktur, zu erhöhen. Die hier vorliegenden Ergebnisse deuten eine Erhöhung der Stabilität an. T2 - Schichtbildung von Perowskit Nanopartikeln mit einstellbaren optischen und elektronischen Eigenschaften KW - Perovskite KW - Nanoparticle KW - Quantumdots KW - Perowskit KW - Nanopartikel KW - Nanoplättchen KW - Quantenpunkte Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475667 ER - TY - THES A1 - Latza, Victoria Maria T1 - Interactions involving lipid-based surfaces T1 - Wechselwirkungen lipid-basierter Oberflächen BT - from protein adsorption to membrane adhesion BT - Protein-Adsorption und Membran-Adhäsion N2 - Interactions involving biological interfaces such as lipid-based membranes are of paramount importance for all life processes. The same also applies to artificial interfaces to which biological matter is exposed, for example the surfaces of drug delivery systems or implants. This thesis deals with the two main types of interface interactions, namely (i) interactions between a single interface and the molecular components of the surrounding aqueous medium and (ii) interactions between two interfaces. Each type is investigated with regard to an important scientific problem in the fields of biotechnology and biology: 1.) The adsorption of proteins to surfaces functionalized with hydrophilic polymer brushes; a process of great biomedical relevance in context with harmful foreign-body-response to implants and drug delivery systems. 2.) The influence of glycolipids on the interaction between lipid membranes; a hitherto largely unexplored phenomenon with potentially great biological relevance. Both problems are addressed with the help of (quasi-)planar, lipid-based model surfaces in combination with x-ray and neutron scattering techniques which yield detailed structural insights into the interaction processes. Regarding the adsorption of proteins to brush-functionalized surfaces, the first scenario considered is the exposure of the surfaces to human blood serum containing a multitude of protein species. Significant blood protein adsorption was observed despite the functionalization, which is commonly believed to act as a protein repellent. The adsorption consists of two distinct modes, namely strong adsorption to the brush grafting surface and weak adsorption to the brush itself. The second aspect investigated was the fate of the brush-functionalized surfaces when exposed to aqueous media containing immune proteins (antibodies) against the brush polymer, an emerging problem in current biomedical applications. To this end, it was found that antibody binding cannot be prevented by variation of the brush grafting density or the polymer length. This result motivates the search for alternative, strictly non-antigenic brush chemistries. With respect to the influence of glycolipids on the interaction between lipid membranes, this thesis focused on the glycolipids’ ability to crosslink and thereby to tightly attract adjacent membranes. This adherence is due to preferential saccharide-saccharide interactions occurring among the glycolipid headgroups. This phenomenon had previously been described for lipids with special oligo-saccharide motifs. Here, it was investigated how common this phenomenon is among glycolipids with a variety of more abundant saccharide-headgroups. It was found that glycolipid-induced membrane crosslinking is equally observed for some of these abundant glycolipid types, strongly suggesting that this under-explored phenomenon is potentially of great biological relevance. N2 - Wechselwirkungen, die von biologischen Grenzflächen wie Lipidmembranen eingegangen werden, haben tiefgreifende Auswirkungen auf alle Lebensprozesse. Dasselbe trifft auf alle künstlichen Grenzflächen zu, die in Kontakt mit biologischer Materie treten. Die Oberflächen von Wirkstoffverabreichungssystemen oder Implantaten sind hierfür prominente Beispiele. Diese Dissertationsschrift behandelt zwei Hauptkategorien von Grenzflächen-Wechselwirkungen: Zum einen die Wechselwirkung zwischen einzelnen Grenzflächen und den molekularen Komponenten des wässrigen Umfelds; zum anderen die Wechselwirkung zwischen zwei Grenzflächen. Jede dieser beiden Wechselwirkungskategorien wurde unter Bezugnahme auf eine wichtige wissenschaftliche Fragestellung aus den Bereichen der Biologie und Biotechnologie untersucht: 1.) Die Adsorption von Proteinen an Oberflächen die mit hydrophilen Polymerbürsten funktionalisiert sind; diese Anlagerung von biologischem Material stellt einen Prozess von äußerster biomedizinischer Relevanz dar, der beispielsweise beim Auftreten der schädlichen Fremdkörperabstoßung von Implantaten oder Wirkstoffverabreichungssystemen eine entscheidende Rolle spielt. 2.) Der Einfluss von Glykolipiden auf Wechselwirkungen zwischen Lipidmembranen, einem bislang größtenteils unerforschten Phänomen von potentiell herausragender biologischer Bedeutung. Die Bearbeitung beider Fragestellungen erfolgte unter Verwendung (quasi-)planarer, lipid-basierter Modellsysteme in Kombination mit Röntgen- oder Neutronenstreuung, welche detaillierte strukturelle Einblicke von Wechselwirkungsprozessen liefern. In Bezug auf die Adsorption von Proteinen an polymer-funktionalisierte Oberflächen wurde zunächst ein Szenario behandelt, bei dem die Oberflächen menschlichem Blutserum ausgesetzt sind, welches eine Vielzahl verschiedener Proteinspezies enthält. Die verwendete Funktionalisierung gilt gemeinhin als proteinabstoßend. Anders als erwartet zeigte sich dennoch signifikante Adsorption von Blutproteinen auf der Oberfläche. Die gemessene Adsorption weist zwei unterschiedliche Arten auf: Starke Adsorption an die Oberfläche, an die die Polymere kovalent gebunden sind, und schwache Adsorption an die Polymerbürste selbst. Der zweite Aspekt, der beleuchtet wurde, sind die Folgen von Antikörpern gegen die Bürstenpolymere. Deren zunehmendes Vorkommen stellt ein Problem für biomedizinische Anwendungen dar. Die Ergebnisse der Arbeit zeigen, dass die starke Adsorption von Antikörpern nicht durch die Veränderung von Bürstenparametern, wie Anbindungsdichte oder Polymerisationsgrad, aufgehalten werden kann. Diese Erkenntnis motiviert die Suche nach alternativen, nicht-antigenen Bürstenmaterialien. In der zweiten Wechselwirkungskategorie, dem Einfluss von Glykolipiden auf Wechselwirkungen zwischen Lipidmembranen, wurde die Fähigkeit der Glykolipide zur Membran-Adhäsion und der damit einhergehenden starken Anziehung von aneinander liegenden Membranen beleuchtet. Die Kohäsion erfolgt dabei über anziehende Saccharid-Saccharid-Wechselwirkungen der Kopfgruppen. Dieses Verhalten wurde schon für Lipide mit speziellen Oligosaccharid-Motiven beschrieben. Daher wurde bei der Untersuchung der Adhäsionsfähigkeit besonders die Verbreitung des Phänomens unter Glykolipiden mit häufig vorkommenden Saccharid-Kopfgruppen fokussiert. Es zeigte sich, dass die von Glykolipiden hervorgerufene Adhäsion auch für einige dieser häufig vorkommenden Glykolipidtypen beobachtet werden kann. Dies deutet darauf hin, dass dieses Phänomen von weitreichender Bedeutung für die Biologie ist und daher weiterhin intensiv erforscht werden sollte. KW - surfaces and interfaces KW - biocompatibility KW - PEG brushes KW - lipids KW - neutron reflectometry KW - biological membranes KW - glycolipids KW - SAXS KW - WAXS KW - neutron diffraction KW - off-specular scattering KW - Oberfächen KW - Grenzflächen KW - Biokompatibilität KW - PEG-Funktionalisierung KW - Lipide KW - Neutronen Reflektometrie KW - biologische Membranen KW - Glykolipide KW - SAXS KW - WAXS KW - Neutronen Diffraktion Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445593 ER - TY - THES A1 - Lehmann, Frederike Felizia T1 - Solubility limits and phase stabilizing effects of mixed hybrid perovskites N2 - In recent years the development of renewable energy sources attracted much attention due to the increasing environmental pollution induced by burning fossil fuels. The growing public interest in reducing greenhouse gases and the use of pollution-free energies (bio-mass-, geothermal-, solar-, water- or wind energy) paved the way for scientific research in renewable energies. [1] Solar energy provides unlimited access and offers high applicational flexibility, which is needed for energy consumption in a modern society. The scientific interest in photovoltaics (PV) nowadays focuses on discovering new materials and improving materials properties, aiming for the production of highly efficient solar cells. Lately, a new type of absorber material based on the perovskite type structure reached power conversion efficiencies of more than 24%. [2] By varying the chemical composition the electronic properties as e.g. the band gap energy can be tuned to increase the absorption range of this absorber material. This makes them in particular attractive for use in tandem solar cells, where silicon and perovskite absorber layers are combined to absorb a large range of the vible light (28.0% efficiency). [2] However, perovskite based solar cells not only suffer from fast degradation when exposed to humidity, but also from the use of toxic elements (e.g. lead), which can result in long-term environmental damage. Therefore, the aim of this study was to determine the fundamental structural and optoelectronical properties of highly interesting hybrid perovskite materials, the MAPbX3 solid solution (MA=CH3NH3; X=I,Br,Cl) and the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution (FA=HC(NH2)2). The study was performed on powder samples by using X-ray diffraction, revealing the crystal structure and solubility behavior of all solid solutions. Moreover the temperature-dependent behavior was studied using in-situ high resolution synchrotron X-ray diffraction and combinatorial thermal analysis methods. The influence of compositional changes on the band gap energy variation were observed using spectroscopic methods as photoluminescence and diffuse reflectance spectroscopy. The obtained results have shown that for the MAPb(I1-xBrx)3 solid solution a large miscibility gap in the range of 0.29 ( ± 0.02) ≤ x ≤ 0.92 ( ± 0.02) is present. This miscibility gap limits the suitable compositional range for use in thin film solar cells of mixed halide compounds. From the temperature-dependent in-situ synchrotron X-ray diffraction studies the complete T-X-phase diagram was established. Studies on the MAPb(Cl1-xBrx)3 solid solution revealed that MAPb(Cl1-xBrx)3 forms a complete solid solution series. For the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution the aim was to study the formation of the d-modification in FAPbI3, which is undesired for solar cell application. This can be overcome by stabilizing the favored high temperature cubic a-modification at ambient conditions. By partial substituting the formamidinium molecule by methylammonium and cesium the stabilization of the cubic modification was successful. The solubility limit of FA1-xCsxPbI3 solid solution was determined to be x=0.1, while a full miscibility was observed for the FA1-xMAxPbI3 solid solution. For the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution a solubility limit of cesium was observed to be y=0.1. The optoelectronic properties were investigated, revealing a linear change of band gap energy with chemical composition. It is demonstrated that the stabilized triple cation compound with cubic perovskite-type crystal structure shows enhanced stability of approximately six months. Furthermore, a short insight into lead-free perovskite-type materials is given, using germanium as non-toxic alternative to lead. For germanium based perovskites a fast decomposition in air was observed, due to the preferred formation of GeI4 in oxygen atmosphere. In-situ low temperature synchrotron X-ray diffraction measurements revealed a yet unknown low temperature modification of MAGeI3. [1] WESSELAK, Viktor; SCHABBACH, Thomas; LINK, Thomas; FISCHER, Joachim: Handbuch Regenerative Energietechnik. Springer, 2017 [2] NREL: Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf. – 25.04.2019 Y1 - 2020 ER - TY - THES A1 - López de Guereñu, Anna T1 - Tm3+-doped NaYF4 nanoparticles T1 - Tm3+-dotierte NaYF4 Nanopartikel BT - upconversion properties and bioimaging BT - Aufkonversionseigenschaften und Biologische Bildgebung N2 - Lately, the integration of upconverting nanoparticles (UCNP) in industrial, biomedical and scientific applications has been increasingly accelerating, owing to the exceptional photophysical properties that UCNP offer. Some of the most promising applications lie in the field of medicine and bioimaging due to such advantages as, among others, deeper tissue penetration, reduced optical background, possibility for multicolor imaging, and lower toxicity, compared to many known luminophores. However, some questions regarding not only the fundamental photophysical processes, but also the interaction of the UCNP with other luminescent reporters frequently used for bioimaging and the interaction with biological media remain unanswered. These issues were the primary motivation for the presented work. This PhD thesis investigated several aspects of various properties and possibilities for bioapplications of Yb3+,Tm3+-doped NaYF4 upconverting nanoparticles. First, the effect of Gd3+ doping on the structure and upconverting behaviour of the nanocrystals was assessed. The ageing process of the UCNP in cyclohexane was studied over 24 months on the samples with different Gd3+ doping concentrations. Structural information was gathered by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and discussed in relation to spectroscopic results, obtained through multiparameter upconversion luminescence studies at various temperatures (from 4 K to 295 K). Time-resolved and steady-state emission spectra recorded over this ample temperature range allowed for a deeper understanding of photophysical processes and their dependence on structural changes of UCNP. A new protocol using a commercially available high boiling solvent allowed for faster and more controlled production of very small and homogeneous UCNP with better photophysical properties, and the advantages of a passivating NaYF4 shell were shown. Förster resonance energy transfer (FRET) between four different species of NaYF4: Yb3+, Tm3+ UCNP (synthesized using the improved protocol) and a small organic dye was studied. The influence of UCNP composition and the proximity of Tm3+ ions (donors in the process of FRET) to acceptor dye molecules have been assessed. The brightest upconversion luminescence was observed in the UCNP with a protective inert shell. UCNP with Tm3+ ions only in the shell were the least bright, but showed the most efficient energy transfer. In the final part, two surface modification strategies were applied to make UCNP soluble in water, which simultaneously allowed for linking them via a non-toxic copper-free click reaction to the liposomes, which served as models for further cell experiments. The results were assessed on a confocal microscope system, which was made possible by lesser known downshifting properties of Yb3+, Tm3+-doped UCNP. Preliminary antibody-staining tests using two primary and one dye-labelled secondary antibodies were performed on MDCK-II cells. N2 - In letzter Zeit hat sich die Integration von hochkonvertierenden Nanopartikeln (UCNP) in industriellen, biomedizinischen und wissenschaftlichen Anwendungen aufgrund der außergewöhnlichen photophysikalischen Eigenschaften, die UCNP bieten, zunehmend beschleunigt. Einige der vielversprechendsten Anwendungen liegen auf dem Gebiet der Medizin und des Bioimaging, der Bildgebung in biologischen Proben, unter anderem aufgrund vieler Vorteile wie einer tieferen Gewebedurchdringung, einem verringerten optischen Hintergrund, der Möglichkeit einer mehrfarbigen Bildgebung und einer geringeren Toxizität im Vergleich zu vielen bekannten Luminophoren. Einige Fragen, die nicht nur die grundlegenden photophysikalischen Prozesse betreffen, sondern auch die Wechselwirkung der UCNP mit anderen Lumineszenzreportern, die häufig für das Bioimaging verwendet werden, und die Wechselwirkung mit biologischen Medien bleiben jedoch offen. Diese Themen waren die Hauptmotivation für die vorgestellte Arbeit. Diese Doktorarbeit untersuchte verschiedene Aspekte verschiedener Eigenschaften und Möglichkeiten für die Bioanwendung von Yb3+,Tm3+-dotierten NaYF4-hochkonvertierenden Nanopartikeln. Zunächst wurde der Einfluss verschiedener Gd3+-Dotierungen auf die Struktur und das Hochkonvertierungsverhalten der Nanokristalle untersucht. Der Alterungsprozess des UCNP in Cyclohexan wurde über 24 Monate an Proben mit unterschiedlichen Gd3+-Dotierungskonzentrationen untersucht. Strukturinformationen wurden mittels Röntgenbeugung (XRD), Transmissionselektronenmikroskopie (TEM) und dynamischer Lichtstreuung (DLS) gesammelt und in Bezug auf die spektroskopischen Ergebnisse diskutiert, die durch Multiparameter-Hochkonversion-Lumineszenz-Experimenten bei verschiedenen Temperaturen (von 4 K bis 295 K) erhalten wurden. Zeitaufgelöste und stationäre Emissionsspektren, die über diesen weiten Temperaturbereich aufgezeichnet wurden, ermöglichten ein tieferes Verständnis der photophysikalischen Prozesse und ihrer Abhängigkeit von strukturellen Änderungen des UCNP. Ein neues Protokoll unter Verwendung eines im Handel erhältlichen hochsiedenden Lösungsmittels ermöglichte eine schnellere und kontrolliertere Herstellung von sehr kleinen und homogenen UCNP mit besseren photophysikalischen Eigenschaften. Weiterhin wurden die Vorteile einer passivierenden NaYF4-Hülle gezeigt. Der Förster-Resonanzenergietransfer (FRET) zwischen vier verschiedenen Spezies der NaYF4:Yb3+,Tm3+ UCNP (synthetisiert unter Verwendung des verbesserten Protokolls) und einem kleinen organischen Farbstoff wurde untersucht. Der Einfluss der UCNP-Zusammensetzung und die Nähe von Tm3+-Ionen (Donoren im FRET-Prozess) zu Akzeptorfarbstoffmolekülen wurden untersucht. Die effizienteste Hochkonversionslumineszenz wurde bei dem UCNP mit einer schützenden inerten Hülle beobachtet. Die UCNP mit den nur in der Schale dotierten Tm3+-Ionen leuchteten am schlechtesten, zeigten jedoch den effizientesten Energietransfer. Im letzten Teil wurden zwei Oberflächenmodifizierungsstrategien angewendet, um die UCNP wasserlöslich zu machen. Dadurch wurde es gleichzeitig möglich, die UCNP mittels einer ungiftigen kupferfreien Klickreaktion mit den Liposomen zu verbinden, die als Modelle für weitere Zellexperimente dienten. Die Ergebnisse wurden mit einem konfokalen Mikroskopsystem untersucht, das durch weniger bekannte Abwärtsumwandlungseigenschaften von Yb3+,Tm3+-dotiertem UCNP ermöglicht wurde. Vorläufige Antikörperfärbungstests wurden unter Verwendung von zwei primären Antikörpern und einem farbstoffmarkierten sekundären Antikörper an MDCK-II-Zellen durchgeführt. KW - upconverting nanoparticles KW - core-shell UCNP KW - resonance energy transfer KW - time-resolved luminescence KW - antibody staining KW - Antikörper-Färbung KW - Kern-Schale Aufkonvertierende Nanopartikel KW - Resonante Energie Transfer KW - Zeitaufgelöste Lumineszenz Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475593 ER - TY - THES A1 - Markushyna, Yevheniia T1 - Modern photoredox transformations applied to the needs of organic synthesis N2 - Abstract. Catalysis is one of the most effective tools for the highly efficient assembly of complex molecular structures. Nevertheless, it is mainly represented by transition metal-based catalysts and typically is an energy consuming process. Therefore, photocatalysis utilizing solar energy is one of the appealing approaches to overcome these problems. A great alternative to classic transition metal-based photocatalysts, carbon nitrides, a group of organic polymeric semiconductors, have already shown their efficiency in water splitting, CO2 reduction, and organic pollutants degradation. However, these materials have also a great potential for the use in functionalization of complex organic molecules for synthetic needs as it was shown in recent years. This work addresses the challenge to develop efficient system for heterogeneous organic photocatalysis, employing cheap and environmentally benign photocatalysts – carbon nitrides. Herein, fundamental properties of semiconductors are studied from the organic chemistry standpoint; the inherent properties of carbon nitrides, such as ability to accumulate electrons, are deeply investigated and their effect on the reaction outcome is established. Thus, understanding of the electron charging processes allowed for the synthesis of otherwise hardly-achieved diazetidines-1,3 by tetramerization of benzylamines. Furthermore, the high electron capacity of Potassium Poly(heptazine imide)s (K-PHI) made possible a multi-electron reduction of aromatic nitro compounds to bare or formylated anilines. Additionally, two deep eutectic solvents (DES) were designed as a sustainable reaction media and reducing reagent for this reaction. Eventually, the high oxidation ability of carbon nitride K-PHI is employed in a challenging reaction of halide anion oxidation (Cl―, Br―) to accomplish electrophilic substitution in aromatic ring. The possibility to utilize NaCl solution (seawater mimetic) for the chlorination of electron rich arenes was shown. Eventually, light itself is used as a tool in a chromoselective photocatalytic oxidation of aromatic thiols and thioacetatas to three different compounds, using UV, blue, and red LEDs. All in all, the work enhances understanding the mechanism of heterogeneous photocatalysis in synthetic organic reactions and therefore, is a step forward to the sustainable methods of synthesis in organic chemistry. N2 - Abstrakt. Die Katalyse ist eines der effektivsten Werkzeuge für den hocheffizienten Aufbau komplexer molekularer Strukturen. Dennoch wird sie hauptsächlich durch Katalysatoren auf der Basis von Übergangsmetallen repräsentiert und ist typischerweise ein energieaufwendiger Prozess. Daher ist die Photokatalyse unter Nutzung der Sonnenenergie einer der attraktiven Ansätze zur Überwindung dieser Probleme. Kohlenstoffnitride, eine Gruppe organischer polymerer Halbleiter, haben ihre Effizienz bei der Wasserspaltung, der CO2-Reduktion und dem Abbau organischer Schadstoffe bereits unter Beweis gestellt. Diese Materialien haben jedoch auch ein großes Potenzial für die Funktionalisierung komplexer organischer Moleküle für synthetische Zwecke, wie sich in den letzten Jahren gezeigt hat. Diese Arbeit befasst sich mit der Herausforderung, ein effizientes System für die heterogene organische Photokatalyse zu entwickeln, bei dem billige und umweltfreundliche Photokatalysatoren – Kohlenstoffnitride – zum Einsatz kommen. Dabei werden grundlegende Eigenschaften von Halbleitern aus organisch-chemischer Sicht untersucht; die inhärenten Eigenschaften von Kohlenstoffnitriden, wie die Fähigkeit zur Elektronenanreicherung, werden eingehend untersucht und ihr Einfluss auf das Reaktionsergebnis festgestellt. So ermöglichte das Verständnis der Elektronenladungsvorgänge die Synthese von sonst kaum erreichten Diazetidinen-1,3 durch Tetramerisierung von Benzylaminen. Darüber hinaus ermöglichte die hohe Elektronenkapazität von Kalium-Polyheptazinimid (K-PHI) eine Mehrelektronenreduktion von aromatischen Nitroverbindungen zu „nackten“ oder formylierten Anilinen. Zudem wird die hohe Oxidationsfähigkeit von Kohlenstoffnitrid, K-PHI, in einer herausfordernden Reaktion der Oxidation von Halogenidanionen genutzt, um eine elektrophile Substitution im aromatischen Ring zu erreichen. Schließlich wird das Licht selbst als Werkzeug in einer chromoselektiven photokatalytischen Oxidation von aromatischen Thiolen und Thioacetaten verwendet, um drei verschiedene Verbindungen unter Verwendung von UV-, blauen und roten LEDs zu syntetisieren. Alles in allem verbessert die Arbeit das Verständnis des Mechanismus der heterogenen Photokatalyse in synthetischen organischen Reaktionen und ist daher ein Schritt vorwärts zu nachhaltigen Synthesemethoden in der organischen Chemie. KW - photocatalysis KW - carbon nitride KW - organic chemistry KW - photoredox catalysis KW - Photochemie KW - Photokatalyse Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-477661 ER - TY - THES A1 - Perovic, Milena T1 - Functionalization of nanoporous carbon materials for chiral separation and heterogeneous oxidation catalysis N2 - The impact that catalysis has on global economy and environment is substantial, since 85% of all chemical industrial processes are catalytic. Among those, 80% of the processes are heterogeneously catalyzed, 17% make use of homogeneous catalysts, and 3% are biocatalytic processes. Especially in the pharmaceutical and agrochemical industry, a significant part of these processes involves chiral compounds. Obtaining enantiomerically pure compounds is necessary and it is usually accomplished by asymmetric synthesis and catalysis, as well as chiral separation. The efficiency of these processes may be vastly improved if the chiral selectors are positioned on a porous solid support, thereby increasing the available surface area for chiral recognition. Similarly, the majority of commercial catalysts are also supported, usually comprising of metal nanoparticles (NPs) dispersed on highly porous oxide or nanoporous carbon material. Materials that have exceptional thermal and chemical stability, and are electrically conductive are porous carbons. Their stability in extreme pH regions and temperatures, the possibility to tailor their pore architecture and chemical functionalization, and their electric conductivity have already established these materials in the fields of separation and catalysis. However, their heterogeneous chemical structure with abundant defects make it challenging to develop reliable models for the investigation of structure-performance relationships. Therefore, there is a necessity for expanding the fundamental understanding of these robust materials under experimental conditions to allow for their further optimization for particular applications. This thesis gives a contribution to our knowledge about carbons, through different aspects, and in different applications. On the one hand, a rather exotic novel application was investigated by attempts in synthesizing porous carbon materials with an enantioselective surface. Chapter 4.1 described an approach for obtaining mesoporous carbons with an enantioselective surface by direct carbonization of a chiral precursor. Two enantiomers of chiral ionic liquids (CIL) based on amino acid tyrosine were used as carbon precursors and ordered mesoporous silica SBA-15 served as a hard template for obtaining porosity. The chiral recognition of the prepared carbons has been tested in the solution by isothermal titration calorimetry with enantiomers of Phenylalanine as probes, as well as chiral vapor adsorption with 2-butanol enantiomers. Measurements in both solution and the gas phase revealed the differences in the affinity of carbons towards two enantiomers. The atomic efficiency of the CIL precursors was increased in Chapter 4.2, and the porosity was developed independently from the development of chiral carbons, through the formation of stable composites of pristine carbon and CIL-derived coating. After the same set of experiments for the investigation of chirality, the enantiomeric ratios of the composites reported herein were even higher than in the previous chapter. On the other hand, the structure‒activity relationship of carbons as supports for gold nanoparticles in a rather traditional catalytic model reaction, on the interface between gas, liquid, and solid, was studied. In Chapter 5.1 it was shown on the series of catalysts with different porosities that the kinetics of ᴅ-glucose oxidation reaction can be enhanced by increasing the local concentration of the reactants around the active phase of the catalyst. A large amount of uniform narrow mesopores connected to the surface of the Au catalyst supported on ordered mesoporous carbon led to the water confinement, which increased the solubility of the oxygen in the proximity of the catalyst and thereby increased the apparent catalytic activity of this catalyst. After increasing the oxygen concentration in the internal area of the catalyst, in Chapter 5.2 the concentration of oxygen was increased in the external environment of the catalyst, by the introduction of less cohesive liquids that serve as efficient solvent for oxygen, perfluorinated compounds, near the active phase of the catalyst. This was achieved by a formation of catalyst particle-stabilized emulsions of perfluorocarbon in aqueous ᴅ-glucose solution, that further promoted the catalytic activity of gold-on-carbon catalyst. The findings reported within this thesis are an important step in the understanding of the structure-related properties of carbon materials. N2 - Die Auswirkungen, die die Katalyse auf die globale Wirtschaft und Umwelt hat, sind beträchtlich, da 85% aller chemischen Industrieprozesse katalytisch sind. Vor allem in der pharmazeutischen und agrochemischen Industrie ist ein bedeutender Teil dieser Prozesse mit chiralen Verbindungen verbunden, Moleküle, die als Bild und Spiegelbild dargestellt werden können. Es ist notwendig, chiral reine Verbindungen zu erhalten, und die Prozesse, um dies zu erreichen, sind effizienter, wenn poröse chirale Materialien aufgrund ihrer größeren Oberfläche verwendet werden. In ähnlicher Weise besteht die Mehrzahl der kommerziellen Katalysatoren in der Regel aus Metallnanopartikeln, die auf hochporösem Oxid- oder nanoporösem Kohlenstoffmaterial dispergiert sind. Materialien, die eine außergewöhnliche thermische und chemische Stabilität aufweisen und elektrisch leitfähig sind, sind poröse Kohlenstoffe. Ihre Anwendung ist jedoch aufgrund ihrer heterogenen, defektreichen Struktur sehr anspruchsvoll. Daher besteht die Notwendigkeit, das grundlegende Verständnis dieser Materialien unter experimentellen Bedingungen zu erweitern, um ihre weitere Optimierung für bestimmte Anwendungen zu ermöglichen. Diese Arbeit leistet einen Beitrag zu unserem Wissen über Kohlenstoffe durch eine eher exotische neue Anwendung der chiralen Trennung und eine eher traditionelle katalytische Anwendung. In Kapitel 4 wurden zwei Ansätze zur Gewinnung nanoporöser Kohlenstoffe mit chiraler Oberfläche unter Verwendung chiraler ionischer Flüssigkeitsvorläufer beschrieben. Ihre chirale Erkennung wurde in der Lösung und in der Gasphase untersucht. Kapitel 5 konzentrierte sich auf die Struktur-Aktivitäts-Beziehung von Kohlenstoffmaterialien als Träger von Goldnanopartikeln in einer katalytischen Modellreaktion der Glukoseoxidation mit molekularem Sauerstoff. Die in dieser Arbeit berichteten Ergebnisse sind ein wichtiger Schritt zum Verständnis der strukturbezogenen Eigenschaften von Kohlenstoffmaterialien. T2 - Funktionalisierung von nanoporösen Kohlenstoffmaterialien für die chirale Trennung und heterogene Oxidationskatalyse KW - Porous carbon KW - heterogeneous catalysis KW - chiral separation KW - functionalization KW - glucose oxidation KW - poröse Kohlenstoffmaterialien KW - chirale Trennung KW - Funktionalisierung KW - Glukose Oxidation KW - heterogene Katalyse Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-486594 ER - TY - THES A1 - Phung, Thi Thuy Nga T1 - Defect chemistry in halide perovskites BT - material characterisation and device integration N2 - Metallhalogenid-Perowskite haben sich aufgrund ihrer hervorragenden optoelektronischen Eigenschaften zu einer attraktiven Materialklasse für die Photovoltaikindustrie entwickelt. Die Langzeitstabilität ist jedoch noch immer ein Hindernis für die industrielle Realisierung dieser Materialklasse. Zunehmend zeigen sich Hinweise dafür, dass intrinsische Defekte im Perowskit die Material-Degradation fördern. Das Verständnis der Defekte im Perowskit ist wichtig, um seine Stabilität und optoelektronische Qualität weiter zu verbessern. Diese Dissertation konzentriert sich daher auf das Thema Defektchemie im Perowskit. Der erste Teil der Dissertation gibt einen kurzen Überblick über die Defekteigenschaften von Halogenid-Perowskiten. Anschließend zeigt der zweite Teil, dass das Dotieren von Methylammoniumbleiiodid mit einer kleinen Menge von Erdalkalimetallen (Sr und Mg) ein höherwertiges, weniger fehlerhaftes Material erzeugt, was zu hohen Leerlaufspannungen sowohl in der n-i-p als auch in der p-i-n Architektur von Solarzellen führt. Es wurde beobachtet, dass die Dotierung in zwei Domänen stattfindet: eine niedrige Dotierungskonzentration führt zum Einschluss der entsprechenden Elemente in das Kristallgitter ermöglicht, während eine hohe Dotierungskonzentration zu einer Phasentrennung führt. Das Material kann im Niedrigdotierungsbereich mehr n-dotiert sein, während es im Hochdotierungsbereich weniger n-dotiert ist. Die Schwelle dieser beiden Regime hängt von der Atomgröße der Dotierelemente ab. Der nächste Teil der Dissertation untersucht die photoinduzierte Degradation von Methylammonium-Bleiiodid. Dieser Abbaumechanismus hängt eng mit der Bildung und Migration von defekten zusammen. Nach der Bildung können sich diese in Abhängigkeit von der Defektdichte und ihrer Verteilung bewegen. Demnach kann eine hohe Defektdichte wie an den Korngrenzen eines Perowskitfilms die Beweglichkeit von ionischen Punktdefekten hemmen. Diese Erkenntnis ließe sich auf das zukünftige Materialdesign in der Photovoltaikindustrie anwenden, da die Perowskit-Solarzellen normalerweise einen polykristallinen Dünnfilm mit hoher Korngrenzendichte verwenden. Die abschließende Studie, die in dieser Dissertation vorgestellt wird, konzentriert sich auf die Stabilität der neuesten „dreifach-kationen“ Perowskit-basierten Solarzellen unter dem Einfluss einer permanent angelegten elektrischen Spannung. Eine längere Betriebsdauer (mehr als drei Stunden permanente Spannung) fördert die Amorphisierung im Halogenid-Perowskiten. Es wird hierbei vermutet, dass sich eine amorphe Phase an den Grenzflächen bildet, insbesondere zwischen der lochselektiven Schicht und dem Perowskit. Diese amorphe Phase hemmt den Ladungstransport und beeinträchtigt die Leistung der Perowskit-Solarzelle erheblich. Sobald jedoch keine Spannung mehr anliegt können sich die Perowskitschichten im Dunkeln bereits nach einer kurzen Pause regenerieren. Die Amorphisierung wird auf die Migration von ionischen Fehlordnungen zurückgeführt, höchstwahrscheinlich auf die Migration von Halogeniden. Dieser Ansatz zeigt ein neues Verständnis des Abbau-Mechanismus in Perowskit-Solarzellen unter Betriebsbedingungen. N2 - Metal halide perovskites have merged as an attractive class of materials for photovoltaic applications due to their excellent optoelectronic properties. However, the long term stability is a roadblock for this class of material’s industrial pathway. Increasing evidence shows that intrinsic defects in perovskite promote material degradation. Consequently, understanding defect behaviours in perovskite materials is essential to further improve device stability and performance. This dissertation, hence, focuses on the topic of defect chemistry in halide perovskites. The first part of the dissertation gives a brief overview of the defect properties in halide perovskite. Subsequently, the second part shows that doping methylammonium lead iodide with a small amount of alkaline earth metals (Sr and Mg) creates a higher quality, less defective material resulted in high open circuit voltages in both n-i-p and p-i-n architecture. It has been found that the mechanism of doping has two distinct regimes in which a low doping concentration enables the inclusion of the dopants into the lattice whereas higher doping concentrations lead to phase segregation. The material can be more n-doped in the low doping regime while being less n-doped in the high doping regime. The threshold of these two regimes is based on the atomic size of the dopants. The next part of the dissertation examines the photo-induced degradation in methylammonium lead iodide. This degradation mechanism links closely to the formation and migration of ionic defects. After they are formed, these ionic defects can migrate, however, not freely depending on the defect concentration and their distribution. In fact, a highly concentrated defect region such as the grain boundaries can inhibit the migration of ionic defects. This has implications for material design as perovskite solar cells normally employ a polycrystalline thin-film which has a high density of grain boundary. The final study presented in this PhD dissertation focuses on the stability of the state-of-the-art triple cation perovskite-based solar devices under external bias. Prolonged bias (more than three hours) is found to promote amorphization in halide perovskite. The amorphous phase is suspected to accumulate at the interfaces especially between the hole selective layer and perovskite. This amorphous phase inhibits the charge collection and severely affects the device performance. Nonetheless, the devices can recover after resting without bias in the dark. This amorphization is attributed to ionic defect migration most likely halides. This provides a new understanding of the potential degradation mechanisms in perovskite solar cells under operational conditions. KW - halide perovskite KW - solar cells KW - defect chemistry KW - ionic defects KW - Defektchemie KW - Halogenid-Perowskite KW - Defekte KW - Solarzellen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476529 ER -