TY - THES A1 - Akdemir, Özgür T1 - Synthesis of novel non-viral gene carriers via atom transfer radical polymerization and click chemistry Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Al Nakeeb, Noah T1 - Self-assembly and crosslinking approaches of double hydrophilic linear-brush block copolymers BT - a biocompatible platform for the next generation of nanoreactors Y1 - 2019 ER - TY - THES A1 - Alahverdjieva, Veneta T1 - Experimental study of mixed protein/surfactant systems at the aqueous solution/air interface Y1 - 2007 CY - Potsdam ER - TY - THES A1 - Ali, Abu Md. Imroz T1 - Morphology control in nanoscopic composite polymer particles Y1 - 2005 CY - Potsdam ER - TY - THES A1 - Ambrogi, Martina T1 - Application of Poly(Ionic Liquid)s for the synthesis of functional carbons Y1 - 2015 ER - TY - THES A1 - Antipov, Alexei T1 - Polyelectrolyte multilayer capsules as controlled permeability vehicles and catalyst carriers Y1 - 2003 ER - TY - THES A1 - Asfaw, Mesfin T1 - Adhesion of multi-component membbranes and strings Y1 - 2005 CY - Potsdam ER - TY - THES A1 - Ast, Cindy T1 - Design and photophysical characterization of single fluorophore-based ammonium sensors Y1 - 2013 CY - Potsdam ER - TY - THES A1 - Ast, Sandra T1 - Integration of the 1,2,3-Triazole "Click" motif as a potent signalling element into metal ion responsive fluorescent probes for physiological cations Y1 - 2012 CY - Potsdam ER - TY - THES A1 - Award, Duhan Jawad T1 - Mixed 1,2-Dümine-1,2-Dithiolate Ligand Complexes : Structure, Proberties and EPR Spectroscopy Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Bahrke, Sven A1 - Einarsson, Jon M. A1 - Gislason, Johannes A1 - Haebel, Sophie A1 - Peter-Katalinic, Jasna A1 - Peter, Martin G. T1 - Characterization of chitooligosaccharides by mass spectrometry Y1 - 2003 SN - 82-47-15901-5 ER - TY - THES A1 - Bai, Shuo T1 - Active hydrogels with nanocomposites Y1 - 2010 CY - Potsdam ER - TY - THES A1 - Baryzewska, Agata W. T1 - Reconfigurable Janus emulsions as signal transducers for biosensing applications Y1 - 2023 ER - TY - THES A1 - Bellin, Ingo T1 - Thermosensitive Polymer Networks with Two Different Shapes in Memory Y1 - 2006 CY - Potsdam ER - TY - THES A1 - Belova, Valentina T1 - Composite fabrication and surface modification via high intensity ultrasound Y1 - 2010 CY - Potsdam ER - TY - THES A1 - Berg, John K. T1 - Size-dependent wetting behavior of organic molecules on solid surfaces Y1 - 2011 CY - Potsdam ER - TY - THES A1 - Bettenbühl, Mario T1 - Microsaccades: symbols in fixational eye movements Y1 - 2012 CY - Potsdam ER - TY - THES A1 - Bhaskar, Thanga Bhuvanesh Vijaya T1 - Biomimetic layers of extracellular matrix glycoproteins as designed biointerfaces N2 - The goal of regenerative medicine is to guide biological systems towards natural healing outcomes using a combination of niche-specific cells, bioactive molecules and biomaterials. In this regard, mimicking the extracellular matrix (ECM) surrounding cells and tissues in vivo is an effective strategy to modulate cell behaviors. Cellular function and phenotype is directed by the biochemical and biophysical signals present in the complex 3D network of ECMs composed mainly of glycoproteins and hydrophilic proteoglycans. While cellular modulation in response to biophysical cues emulating ECM features has been investigated widely, the influence of biochemical display of ECM glycoproteins mimicking their presentation in vivo is not well characterized. It remains a significant challenge to build artificial biointerfaces using ECM glycoproteins that precisely match their presentation in nature in terms of morphology, orientation and conformation. This challenge becomes clear, when one understands how ECM glycoproteins self-assemble in the body. Glycoproteins produced inside the cell are secreted in the extra-cellular space, where they are bound to the cell membrane or other glycoproteins by specific interactions. This leads to elevated local concentration and 2Dspatial confinement, resulting in self-assembly by the reciprocal interactions arising from the molecular complementarity encoded in the glycoprotein domains. In this thesis, air-water (A-W) interface is presented as a suitable platform, where self-assembly parameters of ECM glycoproteins such as pH, temperature and ionic strength can be controlled to simulate in vivo conditions (Langmuir technique), resulting in the formation of glycoprotein layers with defined characteristics. The layer can be further compressed with surface barriers to enhance glycoprotein-glycoprotein contacts and defined layers of glycoproteins can be immobilized on substrates by horizontal lift and touch method, called Langmuir-Schäfer (LS) method. Here, the benefit of Langmuir and LS methods in achieving ECM glycoprotein biointerfaces with controlled network morphology and ligand density on substrates is highlighted and contrasted with the commonly used (glyco)protein solution deposition (SO) method on substrates. In general, the (glyco)protein layer formation by SO is rather uncontrolled, influenced strongly by (glyco)protein-substrate interactions and it results in multilayers and aggregations on substrates, while the LS method results in (glyco)proteins layers with a more homogenous presentation. To achieve the goal of realizing defined ECM layers on substrates, ECM glycoproteins having the ability to self-assemble were selected: Collagen-IV (Col-IV) and fibronectin (FN). Highly packed FN layer with uniform presentation of ligands was deposited on polydimethysiloxane VIII (PDMS) by LS method, while a heterogeneous layer was formed on PDMS by SO with prominent aggregations visible. Mesenchymal stem cells (MSC) on PDMS equipped with FN by LS exhibited more homogeneous and elevated vinculin expression and weaker stress fiber formation than on PDMS equipped with FN by SO and these divergent responses could be attributed to the differences in glycoprotein presentation at the interface. Col-IV are scaffolding components of specialized ECM called basement membranes (BM), and have the propensity to form 2D networks by self-polymerization associated with cells. Col- IV behaves as a thin-disordered network at the A-W interface. As the Col-IV layer was compressed at the A-W interface using trough barriers, there was negligible change in thickness (layer thickness ~ 50 nm) or orientation of molecules. The pre-formed organization of Col-IV was transferred by LS method in a controlled fashion onto substrates meeting the wettability criterion (CA ≤ 80°). MSC adhesion (24h) on PET substrates deposited with Col-IV LS films at 10, 15 and 20 mN·m-1 surface pressures was (12269.0 ± 5856.4) cells for LS10, (16744.2 ± 1280.1) cells for LS15 and (19688.3 ± 1934.0) cells for LS20 respectively. Remarkably, by selecting the surface areal density of Col-IV on the Langmuir trough on PET, there is a linear increase between the number of adherent MSCs and the Col-IV ligand density. Further, FN has the ability to self-stabilize and form 2D networks (even without compression) while preserving native β-sheet structure at the A-W interface on a defined subphase (pH = 2). This provides the possibility to form such layers on any vessel (even on standard six-well culture plates) and the cohesive FN layers can be deposited by LS transfer, without the need for expensive LB instrumentation. Multilayers of FN can be immobilized on substrates by this approach, as easily as Layer-by-Layer method, even without the need for secondary adlayer or activated bare substrate. Thus, this facile glycoprotein coating strategy approach is accessible to many researchers to realize defined FN films on substrates for cell culture. In conclusion, Langmuir and LS methods can create biomimetic glycoprotein biointerfaces on substrates controlling aspects of presentation such as network morphology and ligand density. These methods will be utilized to produce artificial BM mimics and interstitial ECM mimics composed of more than one ECM glycoprotein layer on substrates, serving as artificial niches instructing stem cells for cell-replacement therapies in the future. N2 - Ziel der regenerativen Medizin ist es, Regenerationsprozesse in biologischen Systemen mit Hilfe von nischenspezifischen Zellen, bioaktiven Molekülen und Biomaterialien zu modulieren. In diesem Zusammenhang ist die Nachahmung der extrazellulären Matrix (ECM), die Zellen und Gewebe in vivo umgibt, eine wirksame Strategie zur Modulation des Zellverhaltens. Die zelluläre Funktion und der Phänotyp werden durch die biochemischen und biophysikalischen Signale gesteuert, die in dem komplexen 3D-Netzwerk von ECMs vorhanden sind, welches hauptsächlich aus Glykoproteinen und hydrophilen Proteoglykanen besteht. Während die zelluläre Modulation als Reaktion auf biophysikalische Signale, die ECM-Merkmale nachahmen, umfassend untersucht wurde, ist der Einfluss der biochemischen Charakterisierung von ECM-Glykoproteinen, die deren Darstellung in vivo nachahmen, nicht gut charakterisiert. Es bleibt eine bedeutende Herausforderung, künstliche Biogrenzflächen mit ECM-Glykoproteinen zu schaffen, die in Bezug auf Morphologie, Orientierung und Konformation genau ihrer Darstellung in der Natur entsprechen. Diese Herausforderung wird deutlich, wenn man versteht, wie sich die ECM-Glykoproteine im Körper selbst zusammensetzen. Glykoproteine, die im Inneren der Zelle produziert werden, werden im extrazellulären Raum ausgeschieden, wo sie durch spezifische Interaktionen an die Zellmembran oder andere Glykoproteine gebunden werden. Dies führt zu einer erhöhten lokalen Konzentration und zweidimensionalen Raumbegrenzung, was durch die wechselseitigen Wechselwirkungen, die sich aus der in den Glykoprotein-Domänen kodierten molekularen Komplementarität ergeben, zur Selbstorganisation führt. In dieser Arbeit wird die Luft-Wasser (A-W)-Grenzfläche als eine geeignete Umgebung vorgestellt, mit der die Selbstorganisationsparameter von ECM-Glykoproteinen wie pH-Wert, Temperatur und Ionenstärke kontrolliert werden können, um in vivo-Bedingungen zu simulieren (Langmuir-Technik), was zur Bildung von Glykoproteinschichten mit definierten Eigenschaften führt. Die Schicht kann mit Oberflächenbarrieren weiter komprimiert werden, um die Glykoprotein-Glykoprotein-Kontakte zu verstärken, und definierte Schichten von Glykoproteinen können auf Substraten durch eine horizontale Hebe- und Berührungsmethode, sie sogenannte Langmuir-Schäfer (LS)-Methode, immobilisiert werden. Hier wird der Vorteil der Langmuir- und LS-Methode bei der Erzielung von ECM-Glykoprotein-Biogrenzflächen mit kontrollierter Netzwerkmorphologie und Ligandendichte auf Oberflächen hervorgehoben und mit der üblicherweise verwendeten Methode der (Glyko)Protein-Lösungsabscheidung (SO) auf Oberflächen gegenübergestellt. Im Allgemeinen ist die (Glyko)ProteinX Schichtbildung durch SO eher unkontrolliert, wird stark durch (Glyko)Protein-Substrat- Wechselwirkungen beeinflusst und führt zu Mehrfachschichten und Ansammlungen auf Oberflächen, während die LS-Methode zu (Glyko)Protein-Schichten mit einer homogeneren Darstellung führt. Um definierte ECM-Schichten auf Oberflächen zu erzeugen, wurden ECM-Glykoproteine mit der Fähigkeit zur Selbstorganisation ausgewählt: Kollagen-IV (Col-IV) und Fibronektin (FN). Eine dicht gepackte FN-Schicht mit gleichmäßiger Verteilung der Liganden wurde mit der LSMethode auf Polydimethysiloxan (PDMS) aufgetragen, während auf PDMS mit SO eine heterogene Schicht mit klar erkennbaren Verdichtungen gebildet wurde. Mesenchymale Stammzellen (MSC) auf PDMS, denen FN nach der LS-Methode hinzugefügt wurde, wiesen eine homogenere und erhöhte Vinculin-Expression und eine schwächere Stressfaserbildung auf als MSC Stammzellen auf PDMS, dem FN nach der SO-Methode hinzugefügt wurde, und diese verschiedenen Reaktionen konnten auf die Unterschiede in der Glykoprotein-Verteilung an der Grenzfläche zurückgeführt werden. Col-IV ist eine Komponente spezialisierter ECMs, die Basalmembranen (BM) genannt werden, und neigen zur Bildung von 2D-Netzwerke durch Selbstpolymerisation, die mit Zellen assoziiert sind. Col-IV verhält sich wie ein dünnes ungeordnetes Netzwerk an der A-WGrenzfläche. Während die Col-IV-Schicht an der A-W-Grenzfläche mit Hilfe von Trogbarrieren zusammengerückt wurde, gab es eine vernachlässigbare Änderung der Dicke (Schichtdicke ~ 50 nm) oder der Orientierung der Moleküle. Die vorgeformte Organisation von Col-IV wurde mit der LS-Methode kontrolliert auf Oberflächen aufgetragen, die das Kriterium der Benetzbarkeit erfüllten (CA ≤ 80°). Die MSC-Adhäsion (24h) auf Polyethylenterephthalat (PET)-Oberflächen, die mit Col-IV LS-Folien bei Oberflächendrücken von 10, 15 und 20 mN·m-1 aufgebracht wurden, waren (12269,0 ± 5856,4) Zellen für LS10, (16744,2 ± 1280,1) Zellen für LS15 (19688,3 ± 1934,0) Zellen für LS20. Bemerkenswert ist dabei, dass durch die Auswahl der Oberflächen-Flächendichte von Col-IV am Langmuir-Trog auf PET ein linearer Anstieg zwischen der Anzahl der adhärenten MSCs und der Col-IV-Ligandendichte erfolgt. Auch FN die Fähigkeit, sich selbst zu stabilisieren und 2D-Netzwerke zu bilden (sogar ohne Kompression), während die native β-Faltblattstruktur an der A-W-Grenzfläche auf einer definierten Subphase (pH = 2) erhalten bleibt. Dies bietet die Möglichkeit, solche Schichten auf jedem beliebigen Gefäß (sogar auf Platten mit Standard-Six-Well-Kulturen) zu bilden, und die kohäsiven FN-Schichten können durch LS-Transfer abgelagert werden, ohne dass eine teure LB-Instrumentierung erforderlich ist. Mehrfachschichten aus FN können auf diese Weise XI auf Oberflächen immobilisiert werden, genauso einfach wie bei der Layer-by-Layer-Methode, auch ohne die Notwendigkeit einer zweiten adsorbierenden Schicht oder einer aktivierten blanken Oberfläche. Somit ist dieser Ansatz einer einfachen Glykoprotein- Beschichtungsstrategie vielen Forschern zugänglich, um definierte FN-Filme auf Oberflächen für die Zellkultur zu realisieren. Zusammenfassend lässt sich sagen, dass Langmuir- und LSMethoden biomimetische Glykoprotein-Bioschnittstellen auf Oberflächen erzeugen können, die makroskopische Darstellungen wie Netzwerkmorphologie und Ligandendichte kontrollieren. Diese Methoden werden genutzt, um künstliche BM und ECM zu generieren, die aus mehr als einer Glykoproteinschicht bestehen. Diese können dann als künstliche Nischen für Stammzellen, die in zukünftigen Zellersatztherapien zum Einsatz kommen könnte. KW - Extracellular Matrix KW - Biomimetics KW - Glycoproteins KW - Langmuir-Schaefer method KW - Designed Biointerfaces KW - Extrazelluläre Matrix KW - Biomimetik KW - Glykoproteine KW - Langmuir-Schäfer-Methode KW - Designte Biointerface Y1 - 2020 ER - TY - THES A1 - Cao, Qian T1 - Graphitic carbon nitride and polymer hybrid materials BT - a promising combination for advanced properties N2 - Advanced hybrid materials are recognized as one of the most significant enablers for new technologies, which holds true especially on the quest for sustainable energy sources and energy production schemes (e.g., semiconductor based photocatalytic materials). Usually, a single component is far from meeting all the demands needed for these advanced applications. Hybrid materials are composed of at least two components commonly an inorganic and an organic material on the molecular level, which feature novel properties exceeding the sum of the individual parts and might be the milestones of next-generation applications. This dissertation aims to provide novel combinations of the metal-free semiconductor graphitic carbon nitride (g-C3N4) with polymers to obtain materials with advanced properties and applications. Visible light constitutes the core of the present work as it is the only energy source utilized either in synthesis or in the application process. In the area of applications by combination of g-C3N4 and polymers, two different hybrids were thoroughly elucidated, i.e.. their design and construction as well as potential application in photocatalysis. Novel soft 3D liquid objects were formed via charge-interaction driven interfacial jamming between polyelectrolytes in aqueous environment and colloidal dispersions of g-C3N4 in edible sunflower oil. As such, stable liquid objects could be molded into specific shapes and utilized for photodegradation of organic dyes in water. Furthermore, the grafting of polymers onto g-C3N4 was investigated. Allyl-end functionalized polymers were grafted onto g-C3N4 by a photoinitiated process to yield g-C3N4 with versatile and improved properties, e.g. advanced dispersibility enabling processing via spin coating. As g-C3N4 produces radicals under visible light irradiation, which is of significant interest for polymer science, g-C3N4 containing polymer latex and macrogel beads (MGB) were synthesized by emulsion photopolymerization and inverse suspension photopolymerization, respectively. A well-controlled emulsion photopolymerization process via g-C3N4 initiation was designed, which features synthesis of well-defined and cross-linked polymer particles. Furthermore, the polymerization process was investigated thoroughly, indicating an ad-layer polymerization in early stages of the process. The utilization of functionalized g-C3N4 allowed the polymerization of various monomer types. Moreover, g-C3N4 was utilized as photoinitiator in hydrogel MGB formation. The formed MGB properties could be tailored via process design, e.g. stirring rate, cross-linker content and g-C3N4 content. Finally, MGBs were introduced as photocatalyst for waste water remediation, i.e. the degradation of Rhodamine B in aqueous solution was studied. The present thesis therefore builds a bridge between g-C3N4 and polymers and provides strategies for hybrid material formation. Furthermore, several potential applications are revealed with significant implications for photocatalysis, polymerization processes and polymer materials. KW - Graphitic carbon nitride KW - Hybrid materials synthesis KW - Polymers KW - Photopolymerization Y1 - 2020 ER - TY - THES A1 - Cataldo, Vincenzo Alessandro T1 - Design and synthesis of alkylating ionic liquids and their application in synthesis, materials and proteomics Y1 - 2020 ER - TY - THES A1 - Cerdá Doñate, Elisa T1 - Microfluidics for the study of magnetotactic bacteria towards single-cell analysis N2 - Magnetotactic bacteria comprise a heterogeneous group of Gram negative bacteria which share the ability to synthesise intracellular magnetic nanoparticles surrounded by a lipid bilayer, known as magnetosomes, which are arranged in linear chains. The bacteria exert a unique level of control onto the biomineralization of these nanoparticles, which is seen in the controlled size and shape they have. These characteristics have attracted great attention on understanding the process by which the bacteria synthesise the magnetosomes. Moreover, the magnetosome chain impart the bacteria with a net magnetic dipole which makes them susceptible to interact with magnetic fields and thus orient with the Earth’s magnetic field. This feature has attracted as well much interest to understand how the swimming motility of these microorganisms is affected by the presence of magnetic fields. Most of the studies performed in these bacteria so far have been conducted in the traditional manner using large populations of cells. Such studies have the disadvantage of averaging many different individuals with heterogeneous behaviours and fail to consider individual variations. In addition, in large populations each bacterium will be subjected to a different microenvironment that will influence the bacterial behaviour, but which cannot be defined using these traditional methods. In this thesis, different microfluidic platforms are proposed to overcome these limitations and to offer the possibility to study magnetotactic bacteria in defined environments and down to a single-cell resolution. First, a sediment-like microfluidic platform is presented with the purpose of mimicking the porous environment they bacteria naturally dwell in. The platform allows to observe via transmitted light microscopy that bacterial navigation in crowded environments is enhanced by the Earth’s magnetic field strengths (B = 50 μT) rather than by null (B = 0 μT) or higher magnetic fields (B = 500 μT). Second, a microfluidic system to confine single-bacterial cells in physically defined environments is presented. The system allows to study via transmitted light microscopy the interplay between wall curvature, magnetic fields and bacterial speed affect the motion of a confined bacterium, and shows how bacterial trajectories depend on those three parameters. Third, a microfluidic platform to conduct semi in vivo magnetosome nucleation with a single-cell resolution via X-ray fluorescence is fabricated. It is shown that signal arising from magnetosome full chains can be observed individually in each bacterium. Finally, the iron uptake kinetics of a single bacterium are studied via a fluorescent reporter through confocal microscopy. Two different approaches are used for this: one of the previously mentioned platforms, as well as giant lipid vesicles. It is observed how iron uptake rates vary between cells, as well as how these rates are consistent with magnetosome formation taking place within some hours. The present thesis shows therefore how microfluidic technologies can be implemented for the study of magnetotactic bacteria at different degrees, and the level of resolution that can be attained by going into the single- cell scale.
 N2 - Magnetotaktische Bakterien gehören einer heterogenen Gruppe gramnegativer Bakterien an, welche die Fähigkeit zur Synthese intrazellulärer magnetischer Nanopartikel teilen. Diese Partikel, genannt Magnetosomen, sind von einer Doppellipidschicht umgeben und ordnen sich in linearen Ketten an. Die Bakterien haben ein einzigartiges Maß an Kontrolle über die Biomineralisation dieser Nanopartikel, welche sich in der genau bestimmten Größe und Form zeigt. Diese besonderen Eigenschaften haben die Aufmerksamkeit auf ein besseres Verständnis der Magnetosomensynthese durch die Bakteriengezogen. Darüber hinaus besitzen die Bakterien durch die Magnetosomenkette ein magnetisches Dipolmoment, welches sie befähigt auf ein Magnetfeld zu reagieren, wodurch sie sich im Magnetfeld der Erde ausrichten können. Auch diese Eigenschaft hat großes Interesse geweckt, besonders um den Einfluss eines Magnetfeldes auf das Schwimmverhalten der Mikroorganismen besser zu verstehen. Die meisten bisherigen Studien an diesen Organismen wurden in klassischen Systemen mit großen Populationen durchgeführt. Solche Studien haben den Nachteil, dass das heterogene Verhalten vieler verschiedener Individuen gemittelt wird und daher individuelle Variationen nicht berücksichtigt werden. Zusätzlich ist jedes einzelne Bakterium einer großen Population einer anderen Mikroumgebung ausgesetzt, welche sein Verhalten beeinflusst, das aber durch die Verwendung traditioneller Methoden nicht erfasst werden kann. In dieser Arbeit werden verschiedene mikrofluidische Plattformen vorgestellt, um diese Einschränkungen zu überwinden und die Möglichkeit zu bieten, sogar einzelne magnetotaktische Bakterien in einer definierten Umgebung studieren zu können. Als erstes wird eine Sediment-ähnliche mikrofluidische Plattform vorgestellt, die den Zweck hat, die natürliche poröse Umgebung der Bakterien zu imitieren. Die Plattform erlaubt es mit Hilfe von Durchlichtmikroskopie zu sehen, dass Bakterien in einer gedrängten Umgebung eine verbesserte Navigation im Bereich der Erdmagnetfeldstärke (B = 50 μT) haben, im Vergleich zu keinem (B = 0 μT) oder einem höheren Magnetfeld 
 (B = 50μT). Zweitens wurde ein mikrofluidisches System zum Eingrenzen einzelner Bakterien in einer physisch definierten Umgebung entwickelt. Das System erlaubt mit Hilfe von Durchlichtmikroskopie die Untersuchung des Einflusses und des Zusammenspiels von Wandkrümmung, Magnetfeld und Bakteriengeschwindigkeit auf die Bewegung eines eingegrenzten Bakteriums und zeigt, wie die Bewegungspfade der Bakterien von diesen drei Faktoren abhängen. Drittens wurde eine mikrofluidische Plattform hergestellt, die die Durchführung von semi in-vivo Magnetosomenkeimbildung mit einer Auflösung von einzelnen Zellen mittels Röntgenfluoreszenz ermöglicht. Signale, welche von einer kompletten Magnetosomenkette herrühren, können in individuellen Bakterien beobachtet werden. Abschließend wurde die Kinetik der Eisenaufnahme eines einzelnen Bakteriums durch einen fluoreszierenden Reporter mit Hilfe von konfokaler Mikroskopie untersucht. Zwei verschiedenen Ansätze wurden dabei verwendet: eine der bereits vorgestellten Plattformen, sowie riesige Lipidvesikel. Es wurde beobachtet, dass die Eisenaufnahmerate zwischen verschiedenen Zellen variiert und wie sich damit übereinstimmend Magnetosomen innerhalb von Stunden bilden. Diese Arbeit zeigt damit wie mikrofluidische Technologien für die Untersuchung magnetotaktischer Bakterien in unterschiedlichen Bereichen eingesetzt werden können, und welches Level an Auflösung erreicht werden kann, indem mit einzelnen Zellen gearbeitet wird.
 KW - Magnetotactic bacteria KW - microfluidics KW - single-cell KW - iron KW - microscopy Y1 - 2020 ER - TY - THES A1 - Chanana, Munish T1 - Synthesis of stimuli-responsive and switchable inorganic nanoparticles for biomedical applications Y1 - 2010 CY - Potsdam ER - TY - THES A1 - Chen, Guoxiang T1 - Nanoparticles at solid interfaces N2 - Nanoparticles (NPs) are particles between 1 and 100 nanometers in size. They have attracted enormous research interests owing to their remarkable physicochemical properties and potential applications in the optics, catalysis, sensing, electronics, or optical devices. The thesis investigates systems of NPs attached to planar substrates. In the first part of the results section of the thesis a new method is presented to immobilize NPs. In many NP applications a strong, persistent adhesion to substrates is a key requirement. Up to now this has been achieved with various methods, which are not always the optimum regarding adhesion strength or applicability. We propose a new method which uses capillarity to enhance the binding agents in the contact area between NP and substrate. The adhesion strength resulting from the new approach is investigated in detail and it is shown that the new approach is superior to older methods in several ways. The following section presents the optical visualization of nano-sized objects through a combination of thin film surface distortion and interference enhanced optical reflection microscopy. It is a new, fast and non-destructive technique. It not only reveals the location of NPs as small as 20nm attached to planar surfaces and embedded in a molecularly thin liquid film. It also allows the measurement of the geometry of the surface distortion of the liquid film. Even for small NPs the meniscus reaches out for micrometers, which is the reason why the NPs produce such a pronounced optical footprint. The nucleation and growth of individual bubbles is presented in chapter 5. Nucleation is a ubiquitous natural phenomenon and of great importance in numerous industrial processes. Typically it occurs on very small scales (nanometers) and it is of a random nature (thermodynamics of small systems). Up to now most experimental nucleation studies deal with a large number of individual nucleation processes to cope with its inherently statistical, spatio-temporal character. In contrast, in this thesis the individual O2-bubble formation from single localized platinum NP active site is studied experimentally. The bubble formation is initiated by the catalytic reaction of H2O2 on the Pt surface. It is studied how the bubble nucleation and growth depends on the NP size, the H2O2 concentration and the substrate surface properties. It is observed that in some cases the bubbles move laterally over the substrate surface, driven by the O2-production and the film ablation. KW - Nanoparticles, Adhesion, Interfaces, Bubble, Imaging Y1 - 2018 ER - TY - THES A1 - Chen, Zupeng T1 - Novel strategies to improve (photo)catalytic performance of carbon nitride-based composites Y1 - 2015 ER - TY - THES A1 - Cruz Lemus, Saul Daniel T1 - Enhancing Efficiency of Inverted Perovskite Solar Cells BT - Employing Carbon Nitride and Poly (Ionic -Liquid)s as Interlayers N2 - Carbon nitride and poly(ionic liquid)s (PILs) have been successfully applied in various fields of materials science owing to their outstanding properties. This thesis aims at the successful application of these polymers as innovative materials in the interfaces of hybrid organic–inorganic perovskite solar cells. A critical problem in harnessing the full thermodynamic potential of halide perovskites in solar cells is the design and modification of interfaces to reduce carrier recombination. Therefore, the interface must be properly studied and improved. This work investigated the effect of applying carbon nitride and PILs on a perovskite surface on the device performance. The facile synthetic method for modifying carbon nitride with vinyl thiazole and barbituric acid (CMB-vTA) yields 2.3 nm layers when solution processing is performed using isopropanol. The nanosheets were applied as a metal-free electron transport layer in inverted perovskite solar cells. The application of carbon nitride layers (CMB-vTA) resulted in negligible current-voltage hysteresis with a high open circuit voltage (Voc) of 1.1 V and a short-circuit current (Jsc) of 20.28 mA cm-2, which afforded efficiencies of up to 17%. Thus, the successful implementation of a carbon nitride-based structure enabled good charge extraction with minimized interface recombination between the perovskite and PCBM. Similarly, PILs represent a new strategy of interfacial modification using an ionic polymer in an n-i-p perovskite architecture.. The application of PILs as an interfacial modifier resulted in solar cell devices with an extraordinarily high efficiency of 21.8% and a Voc of 1.17 V. The implementation reduced non-radiative recombination at the perovskite surface through defect passivation. Finally, our work proposes a novel method to efficiently suppress non-radiative charge recombination using the unexplored properties of carbon nitride and PILs in the solar cell field. Additionally, the method for interfacial modification has general applicability because of the simplicity of the post-treatment approach, and therefore has potential applicability in other solar cells. Thus, this work opens the door to a new class of materials to be implemented. Y1 - 2020 ER - TY - THES A1 - Cui, Jing T1 - Preparation of medical grade, amorphous polymer systems with adjustable stiffness and development of self- surfficiently moving model scaffolds based on shape-memory polymer composites Y1 - 2010 CY - Potsdam ER - TY - THES A1 - Cölfen, Helmut T1 - Biomimetric mineralisation using hydrophilic copolymers : synthesis of hybrid colloids with complex from and pathways towards their analysis in solution Y1 - 2000 ER - TY - THES A1 - Dechtrirat, Decha T1 - Combination of self-assembled monolayers (SAMs) and molecularly imprinted polymers (MIPs) in biomimetic sensors Y1 - 2013 CY - Potsdam ER - TY - THES A1 - Demir-Cakan, Rezan T1 - Synthesis, characterization and applications of nanostructured materials using hydrothermal carbonization Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Derese, Solomon A1 - Yenesew, Abiy A1 - Midiwo, Jacob O. A1 - Heydenreich, Matthias A1 - Peter, Martin G. T1 - A new isoflavone from stem bark of Millettia dura Y1 - 2003 SN - 1011-3924 ER - TY - THES A1 - Diehl, Christina T1 - Functional microspheres through crystallization of thermoresponsive poly(2-oxazoline)s Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Dittrich, Matthias T1 - Physical-chemical characterisation of new lipids designed for non-viral gene transfection Y1 - 2011 CY - Potsdam ER - TY - THES A1 - Domínguez, Pablo Haro T1 - Nanostructured poly(benzimidazole)s by chemical modification Y1 - 2013 CY - Potsdam ER - TY - THES A1 - Dong, Wen-Fei T1 - Polyelectrolyte Multilayer Capsules: structure, encapsulation, and optical properties Y1 - 2004 CY - Potsdam ER - TY - THES A1 - Draffehn, Sören T1 - Optical Spectroscopy-Based Characterization of Micellar and Liposomal Systems with Possible Applications in Drug Delivery Y1 - 2016 ER - TY - THES A1 - Duan, Hongwei T1 - Functional Nanoparticles as Self-Assembling Building Block and Synthetic Templates Y1 - 2005 CY - Potsdam ER - TY - THES A1 - Elamparuthi, Elangovan A1 - Linker, Torsten A1 - Kelling, Alexandra A1 - Schilde, Uwe T1 - Crystal structure of methyl 3,4,6-tri-O-benzyl-2-deoxy-2-C-nitromethyl-beta-D-galactopyranoside, C29H33NO7 Y1 - 2009 UR - http://www.oldenbourg.de/verlag/zkristallogr/mn-ncsc.htm U6 - https://doi.org/10.1524/ncrs.2009.0054 SN - 1433-7266 ER - TY - THES A1 - Elangovan, Elamparuthi T1 - Radical additions to glycals : synthesis and transformations of 2-functionalized carbohydrates Y1 - 2009 CY - Potsdam ER - TY - THES A1 - Entrialgo Castano, Maria T1 - Hydrolytic degradation of aliphatic polyester: molecular modeling and quantum mechanical investigations Y1 - 2007 CY - Potsdam ER - TY - THES A1 - Firkala, Tamás T1 - Investigation of nanoparticle-molecule interactions and pharmaceutical model formulations by means of surface enhanced raman spectroscopy Y1 - 2017 ER - TY - THES A1 - Flehr, Roman T1 - Design and development of novel three color-FRET systems in synthetic peptides and oligonucleotides Y1 - 2012 CY - Potsdam ER - TY - THES A1 - Frank, Bradley D. T1 - Complex and adaptive soft colloids BT - templated from reconfigurable jamus emulsions Y1 - 2023 ER - TY - THES A1 - Frankovitch, Christine Marie T1 - Optical methods for monitoring biological parameters of phototropic microorganisms during cultivation Y1 - 2007 CY - Potsdam ER - TY - THES A1 - Frede, Katja T1 - Light-modulated biosynthesis of carotenoids in Brassica rapa ssp. chinensis and the activation of Nrf2 by lutein in human retinal pigment epithelial cells Y1 - 2018 ER - TY - THES A1 - Friese, Viviane A. T1 - Solvato-, vapo, mechanochromic and luminescent behavior of Rhodium, Platinum and Gold complexes and their coordination polymers Y1 - 2016 ER - TY - THES A1 - Frieß, Fabian T1 - Shape-memory polymer micronetworks Y1 - 2016 ER - TY - THES A1 - Früh, Johannes T1 - Structural change of polyelectrolyte multilayers under mechanical stress Y1 - 2011 CY - Potsdam ER - TY - THES A1 - Giusto, Paolo T1 - Chemical vapor deposition of carbon-based thin films BT - from binary to ternary systems Y1 - 2020 ER - TY - THES A1 - Glatzel, Stefan T1 - Cellulose based transition metal nano-composites : structuring and development Y1 - 2012 CY - Potsdam ER - TY - THES A1 - Günther, Erika T1 - Intracellular processes in magnetotactic bacteria studied by optical tools Y1 - ER -