TY - THES A1 - Hoffmann, Toni T1 - Cloning and characterisation of the HMA3 gene and its promoter from Arabidopsis halleri (L.) O'Kane and Al'Shehbaz and Arabidopsis thaliana (L.) Heynhold T1 - Klonierung und Charakterisierung des HMA3 Genes und seines Promotors aus Arabidopsis halleri (L.) O'Kane und Al'Shehbaz und Arabidopsis thaliana (L.) Heynhold N2 - Being living systems unable to adjust their location to changing environmental conditions, plants display homeostatic networks that have evolved to maintain transition metal levels in a very narrow concentration range in order to avoid either deficiency or toxicity. Hence, plants possess a broad repertoire of mechanisms for the cellular uptake, compartmentation and efflux, as well as for the chelation of transition metal ions. A small number of plants are hypertolerant to one or a few specific transition metals. Some metal tolerant plants are also able to hyperaccumulate metal ions. The Brassicaceae family member Arabidopis halleri ssp. halleri (L.) O´KANE and AL´SHEHBAZ is a hyperaccumulator of zinc (Zn), and it is closely related to the non-hypertolerant and non-hyperaccumulating model plant Arabidopsis thaliana (L.) HEYNHOLD. The close relationship renders A. halleri a promising emerging model plant for the comparative investigation of the molecular mechanisms behind hypertolerance and hyperaccumulation. Among several potential candidate genes that are probably involved in mediating the zinc-hypertolerant and zinc-hyperaccumulating trait is AhHMA3. The AhHMA3 gene is highly similar to AtHMA3 (AGI number: At4g30120) in A. thaliana, and its encoded protein belongs to the P-type IB ATPase family of integral membrane transporter proteins that transport transition metals. In contrast to the low AtHMA3 transcript levels in A. thaliana, the gene was found to be constitutively highly expressed across different Zn treatments in A. halleri, especially in shoots. In this study, the cloning and characterisation of the HMA3 gene and its promoter from Arabidopsis halleri (L.) O´KANE and AL´SHEHBAZ and Arabidopsis thaliana (L.) HEYNHOLD is described. Heterologously expressed AhHMA3 mediated enhanced tolerance to Zn and to a much lesser degree to cadmium (Cd) but not to cobalt (Co) in metal-sensitive mutant strains of budding yeast. It is demonstrated that the genome of A. halleri contains at least four copies of AhHMA3, AhHMA3-1 to AhHMA3-4. A copy-specific real-time RT-PCR indicated that an AhHMA3-1 related gene copy is the source of the constitutively high transcript level in A. halleri and not a gene copy similar to AhHMA3-2 or AhHMA3-4. In accordance with the enhanced AtHMA3mRNA transcript level in A. thaliana roots, an AtHMA3 promoter-GUS gene construct mediated GUS activity predominantly in the vascular tissues of roots and not in shoots. However, the observed AhHMA3-1 and AhHMA3-2 promoter-mediated GUS activity in A. thaliana or A. halleri plants did not reflect the constitutively high expression of AhHMA3 in shoots of A. halleri. It is suggested that other factors e. g. characteristic sequence inserts within the first intron of AhHMA3-1 might enable a constitutively high expression. Moreover, the unknown promoter of the AhHMA3-3 gene copy could be the source of the constitutively high AhHMA3 transcript levels in A. halleri. In that case, the AhHMA3-3 sequence is predicted to be highly homologous to AhHMA3-1. The lack of solid localisation data for the AhHMA3 protein prevents a clear functional assignment. The provided data suggest several possible functions of the AhHMA3 protein: Like AtHMA2 and AtHMA4 it might be localised to the plasma membrane and could contribute to the efficient translocation of Zn from root to shoot and/or to the cell-to-cell distribution of Zn in the shoot. If localised to the vacuolar membrane, then a role in maintaining a low cytoplasmic zinc concentration by vacuolar zinc sequestration is possible. In addition, AhHMA3 might be involved in the delivery of zinc ions to trichomes and mesophyll leaf cells that are major zinc storage sites in A. halleri. N2 - Pflanzen sind lebende Systeme, die nicht in der Lage sind ihren Standort sich ändernden Umweltbedingungen anzupassen. Infolgedessen weisen Pflanzen homöostatischeNetzwerke auf, welche die Mengen an intrazellulären Übergangsmetallen in einem sehr engen Konzentrationsbereich kontrollieren um somit Vergiftungs- oder Mangelerscheinungen zu vermeiden. Eine kleine Anzahl von Pflanzen ist hypertolerant gegenüber einem oder mehreren Übergangsmetallen. Einige wenige dieser metalltoleranten Pflanzen sind fähig Übergangsmetalle in beträchtlichen Mengen zu speichern, sprich zu hyperakkumulieren, ohne Vergiftungserscheinungen zu zeigen. Die Haller’sche Schaumkresse (Arabidopis halleri ssp. halleri (L.) O´KANE und AL´SHEHBAZ) aus der Familie der Kreuzblütler (Brassicaceae) ist ein solcher Hyperakkumulator für Zink (Zn). Sie ist nah verwandt mit der Modellpflanze Ackerschmalwand (Arabidopsis thaliana (L.) HEYNHOLD), die jedoch nicht-hypertolerant und nicht-hyperakkumulierend für Übergangsmetalle ist. Diese nahe Verwandtschaft erlaubt vergleichende Studien der molekularen Mechanismen, die Hypertoleranz und Hyperakkumulation zu Grunde liegen. Zu der Gruppe von Kandidatengenen, die möglicherweise von Bedeutung für die Zink-hypertoleranten und -hyperakkumulierenden Eigenschaften von A. halleri sind, gehört AhHMA3, ein Gen mit großer Ähnlichkeit zu AtHMA3 (AGI Nummer: At4g30120) aus A. thaliana. Es kodiert ein Protein aus der Familie transmembraner Übergangsmetall-Transportproteine, den P-typ IB ATPasen. Im Gegensatz zu den niedrigen AtHMA3 Transkriptmengen in A. thaliana wird das AhHMA3 Gen in A. halleri in Gegenwart verschiedener Zn Konzentrationen konstitutiv hoch exprimiert, insbesondere im Spross der Pflanze. Diese Arbeit beschreibt die Klonierung und Charakterisierung des HMA3 Gens und seines Promoters aus A. halleri und A. thaliana. Es wurde gezeigt, dass heterolog exprimiertes AhHMA3 Protein in metallsensitiven Hefestämmen eine erhöhte Toleranz gegenüber Zink und zu einem geringen Grad gegenüber Kadmium (Cd) jedoch nicht gegenüber Kobalt (Co) vermittelt.Weiterhin wurden im Genom von A. halleri mindestens vier AhHMA3 Genkopien, AhHMA3-1 bis AhHMA3-4, nachgewiesen. Eine Genkopie-spezifische Echtzeit-RT-PCR (real-time RT-PCR) deutete darauf hin, dass eine zu AhHMA3-1 und nicht zu AhHMA3-2 oder AhHMA3-4 ähnliche Genkopie die Quelle der konstitutiv hohen Transkriptmengen in A. halleri ist. In Übereinstimmung mit erhöhten mRNS Transkriptmengen inWurzeln von A. thaliana, vermittelte ein AtHMA3 Promoter-GUS (ß-Glucuronidase) Genkonstrukt GUS-Aktivität hauptsächlich in den Leitgeweben der Wurzeln jedoch nicht des Sprosses. Die vermittelte GUS-Aktivität durch Promoterfragmente von AhHMA3-1 und AhHMA3-2 in A. thaliana oder A. halleri Pflanzen spiegelte jedoch nicht die konstitutiv hohe AhHMA3 Expression im Spross von A. halleri wieder. Es wird vermutet, dass andere Faktoren die konstitutiv hohe Expression ermöglichen wie zum Beispiel die gefundenen kopiespezifischen Sequenzinsertionen innerhalb des ersten AhHMA3-1 Introns. Weiterhin ist es denkbar, dass der unbekannte Promoter der AhHMA3-3 Genkopie die Quelle der konstitutiv hohen AhHMA3 Transkriptmengen ist. In diesem Fall wird eine sehr hohe Ähnlichkeit zwischen den Sequenzen von AhHMA3-3 und der AhHMA3-1 vorhergesagt. Es konnten keine deutlichen Ergebnisse zur intrazellulären Lokalisierung gemacht werden, die eine exakte Einordnung der Funktion des AhHMA3 Proteins erlauben würden. Die bisher ermittelten Ergebnisse schlagen jedoch mehrere mögliche Funktionen für AhHMA3 vor: Ähnlich den AhHMA3 homologen Proteinen, AtHMA2 und AtHMA4, könnte AhHMA3 in der Plasmamembran der Zelle sitzen und dort zur effizienten Translokation von Zink aus der Wurzel in den Spross und/oder zur Zell-zu-Zell Verteilung von Zn im Spross beitragen. Falls AhHMA3 in der Membran der Vakuole sitzt, könnte es eine Rolle bei der Aufrechterhaltung niedriger zytoplasmatischer Zinkkonzentrationen durch vakuoläre Zinksequestrierung spielen. Zusätzlich ist es denkbar, dass AhHMA3 an der Abgabe von Zinkionen an Trichome und Blattmesophyllzellen beteiligt ist, die die Haupteinlagerungsorte für Zink in A. halleri darstellen. KW - P-Typ ATPase KW - Übergangsmetalle KW - Hyperakkumulation KW - Zink KW - HMA KW - p-type ATPase KW - transition metals KW - hyperaccumulation KW - zinc KW - HMA Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15259 ER - TY - THES A1 - Mondal, Suvendu Sekhar T1 - Design of isostructural metal-imidazolate frameworks : application for gas storage T1 - Synthese isostruktureller Metall-Imidazolat Frameworks : Anwendung für Gasspeicherung N2 - The sharply rising level of atmospheric carbon dioxide resulting from anthropogenic emissions is one of the greatest environmental concerns facing our civilization today. Metal-organic frameworks (MOFs) are a new class of materials that constructed by metal-containing nodes bonded to organic bridging ligands. MOFs could serve as an ideal platform for the development of next generation CO2 capture materials owing to their large capacity for the adsorption of gases and their structural and chemical tunability. The ability to rationally select the framework components is expected to allow the affinity of the internal pore surface toward CO2 to be precisely controlled, facilitating materials properties that are optimized for the specific type of CO2 capture to be performed (post-combustion capture, precombustion capture, or oxy-fuel combustion) and potentially even for the specific power plant in which the capture system is to be installed. For this reason, significant effort has been made in recent years in improving the gas separation performance of MOFs and some studies evaluating the prospects of deploying these materials in real-world CO2 capture systems have begun to emerge. We have developed six new MOFs, denoted as IFPs (IFP-5, -6, -7, -8, -9, -10, IFP = Imidazolate Framework Potsdam) and two hydrogen-bonded molecular building block (MBB, named as 1 and 2 for Zn and Co based, respectively) have been synthesized, characterized and applied for gas storage. The structure of IFP possesses 1D hexagonal channels. Metal centre and the substituent groups of C2 position of the linker protrude into the open channels and determine their accessible diameter. Interestingly, the channel diameters (range : 0.3 to 5.2 Å) for IFP structures are tuned by the metal centre (Zn, Co and Cd) and substituent of C2 position of the imidazolate linker. Moreover hydrogen bonded MBB of 1 and 2 is formed an in situ functionalization of a ligand under solvothermal condition. Two different types of channels are observed for 1 and 2. Materials contain solvent accessible void space. Solvent could be easily removed by under high vacuum. The porous framework has maintained the crystalline integrity even without solvent molecules. N2, H2, CO2 and CH4 gas sorption isotherms were performed. Gas uptake capacities are comparable with other frameworks. Gas uptake capacity is reduced when the channel diameter is narrow. For example, the channel diameter of IFP-5 (channel diameter: 3.8 Å) is slightly lower than that of IFP-1 (channel diameter: 4.2 Å); hence, the gas uptake capacity and Brunauer-Emmett-Teller (BET) surface area are slightly lower than IFP-1. The selectivity does not depend only on the size of the gas components (kinetic diameter: CO2 3.3 Å, N2 3.6 Å and CH4 3.8 ) but also on the polarizability of the surface and of the gas components. IFP-5 and-6 have the potential applications for the separation of CO2 and CH4 from N2-containing gas mixtures and CO2 and CH4 containing gas mixtures. Gas sorption isotherms of IFP-7, -8, -9, -10 exhibited hysteretic behavior due to flexible alkoxy (e.g., methoxy and ethoxy) substituents. Such phenomenon is a kind of gate effects which is rarely observed in microporous MOFs. IFP-7 (Zn-centred) has a flexible methoxy substituent. This is the first example where a flexible methoxy substituent shows the gate opening behavior in a MOF. Presence of methoxy functional group at the hexagonal channels, IFP-7 acted as molecular gate for N2 gas. Due to polar methoxy group and channel walls, wide hysteretic isotherm was observed during gas uptake. The N2 The estimated BET surface area for 1 is 471 m2 g-1 and the Langmuir surface area is 570 m2 g-1. However, such surface area is slightly higher than azolate-based hydrogen-bonded supramolecular assemblies and also comparable and higher than some hydrogen-bonded porous organic molecules. N2 - Metallorganische Gerüstverbindungen (MOFs) sind eine neue Klasse von porösen Koordinationspolymeren, die aus Metall-Knoten und verbrückenden Liganden bestehen. MOFs können Gasgemische trennen und Gase speichern. Aufgrund ihres modularen Aufbaus können die MOF-Eigenschaften systematisch variiert werden. Ein wichtiges Ziel für das Design von MOFs ist die Synthese von Materialien, die eine hohe selektive Aufnahmefähigkeit und -kapazität für Kohlenstoffdioxid besitzen. Im Rahmen der Arbeit ist es gelungen sechs neue MOFs (IFP-5, -6, -7, -8, -9 und -10) zu synthetisieren. Diese MOFs tragen die Kurzbezeichnung IFP. IFP steht als Abkürzung für Imidazolat-Framework-Potsdam (Imidazolat-basierte Gerüstverbindung Potsdam). In diesen IFPs wurde der Metallknoten (Zink, Cobalt, Cadmium) und der Brückenligand, ein 2-substituiertes Imidazolat-amid-imidat, in der Position variiert, um gute und selektive Sorptionseigenschaften für Kohlenstoffdioxid zu erzielen. Von den synthetisierten Verbindungen hat das IFP-5 die besten Sorptionseigenschaften für Kohlenstoffdioxid. Es konnte weiter gezeigt werden, dass sich die IFP-Struktur bei der Wahl von geeigneten Substituenten 2, wie z.B. Methoxy und Ethoxy auch für das Design von gate-opening (Tür-öffnenden) Effekten eignet. Diese Effekte können wiederum genutzt werden, um selektiv Gasmischungen zu trennen. Wenn man das 4,5-Dicyano-2-methoxy-imidazol in Gegenwart von Zink- und Cobalt-Salzen unter solvothermalen Bedingungen zur Reaktion bringt, erhält man beispiellose supramolekulare Wasserstoffbrückenbindungen zu einem dreidimensionalen Netzwerk, die mit Kanälen verknüpft sind. Diese Kanäle können von Lösungsmittelmolekülen (Wasser und Dimethylformamid) befreit werden und Gase aufnehmen. Insgesamt besteht nun die neue MOF-Klasse der Imidazolat-basierten IFPs aus Vertretern. Das Potential der 2-substituierten 4,5-Dicyanoimidazole ist nicht nur auf die Bildung von porösen Koordinationspolymeren beschränkt, sondern kann auch für die Synthese von bisher unbekannten supramolekularen Strukturen genutzt werden. KW - Metal-organic framework KW - Gas Sorption KW - Cobalt KW - Zinc KW - Ionic Liquid KW - metal-organic framework KW - gas sorption KW - cobalt KW - zinc KW - ionic liquid Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-69692 ER - TY - THES A1 - Stoltnow, Malte T1 - Magmatic-hydrothermal processes along the porphyry to epithermal transition T1 - Magmatisch-hydrothermale Prozesse entlang des porphyrisch-epithermalen Übergangs N2 - Magmatic-hydrothermal systems form a variety of ore deposits at different proximities to upper-crustal hydrous magma chambers, ranging from greisenization in the roof zone of the intrusion, porphyry mineralization at intermediate depths to epithermal vein deposits near the surface. The physical transport processes and chemical precipitation mechanisms vary between deposit types and are often still debated. The majority of magmatic-hydrothermal ore deposits are located along the Pacific Ring of Fire, whose eastern part is characterized by the Mesozoic to Cenozoic orogenic belts of the western North and South Americas, namely the American Cordillera. Major magmatic-hydrothermal ore deposits along the American Cordillera include (i) porphyry Cu(-Mo-Au) deposits (along the western cordilleras of Mexico, the western U.S., Canada, Chile, Peru, and Argentina); (ii) Climax- (and sub−) type Mo deposits (Colorado Mineral Belt and northern New Mexico); and (iii) porphyry and IS-type epithermal Sn(-W-Ag) deposits of the Central Andean Tin Belt (Bolivia, Peru and northern Argentina). The individual studies presented in this thesis primarily focus on the formation of different styles of mineralization located at different proximities to the intrusion in magmatic-hydrothermal systems along the American Cordillera. This includes (i) two individual geochemical studies on the Sweet Home Mine in the Colorado Mineral Belt (potential endmember of peripheral Climax-type mineralization); (ii) one numerical modeling study setup in a generic porphyry Cu-environment; and (iii) a numerical modeling study on the Central Andean Tin Belt-type Pirquitas Mine in NW Argentina. Microthermometric data of fluid inclusions trapped in greisen quartz and fluorite from the Sweet Home Mine (Detroit City Portal) suggest that the early-stage mineralization precipitated from low- to medium-salinity (1.5-11.5 wt.% equiv. NaCl), CO2-bearing fluids at temperatures between 360 and 415°C and at depths of at least 3.5 km. Stable isotope and noble gas isotope data indicate that greisen formation and base metal mineralization at the Sweet Home Mine was related to fluids of different origins. Early magmatic fluids were the principal source for mantle-derived volatiles (CO2, H2S/SO2, noble gases), which subsequently mixed with significant amounts of heated meteoric water. Mixing of magmatic fluids with meteoric water is constrained by δ2Hw-δ18Ow relationships of fluid inclusions. The deep hydrothermal mineralization at the Sweet Home Mine shows features similar to deep hydrothermal vein mineralization at Climax-type Mo deposits or on their periphery. This suggests that fluid migration and the deposition of ore and gangue minerals in the Sweet Home Mine was triggered by a deep-seated magmatic intrusion. The second study on the Sweet Home Mine presents Re-Os molybdenite ages of 65.86±0.30 Ma from a Mo-mineralized major normal fault, namely the Contact Structure, and multimineral Rb-Sr isochron ages of 26.26±0.38 Ma and 25.3±3.0 Ma from gangue minerals in greisen assemblages. The age data imply that mineralization at the Sweet Home Mine formed in two separate events: Late Cretaceous (Laramide-related) and Oligocene (Rio Grande Rift-related). Thus, the age of Mo mineralization at the Sweet Home Mine clearly predates that of the Oligocene Climax-type deposits elsewhere in the Colorado Mineral Belt. The Re-Os and Rb-Sr ages also constrain the age of the latest deformation along the Contact Structure to between 62.77±0.50 Ma and 26.26±0.38 Ma, which was employed and/or crosscut by Late Cretaceous and Oligocene fluids. Along the Contact Structure Late Cretaceous molybdenite is spatially associated with Oligocene minerals in the same vein system, a feature that precludes molybdenite recrystallization or reprecipitation by Oligocene ore fluids. Ore precipitation in porphyry copper systems is generally characterized by metal zoning (Cu-Mo to Zn-Pb-Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. The numerical modeling study setup in a generic porphyry Cu-environment presents new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. This study investigates the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing, and remobilization as first-order controls of the physical hydrology on ore formation. The results show that the magmatic vapor and brine phases ascend with different residence times but as miscible fluid mixtures, with salinity increases generating metal-undersaturated bulk fluids. The release rates of magmatic fluids affect the location of the thermohaline fronts, leading to contrasting mechanisms for ore precipitation: higher rates result in halite saturation without significant metal zoning, lower rates produce zoned ore shells due to mixing with meteoric water. Varying metal contents can affect the order of the final metal precipitation sequence. Redissolution of precipitated metals results in zoned ore shell patterns in more peripheral locations and also decouples halite saturation from ore precipitation. The epithermal Pirquitas Sn-Ag-Pb-Zn mine in NW Argentina is hosted in a domain of metamorphosed sediments without geological evidence for volcanic activity within a distance of about 10 km from the deposit. However, recent geochemical studies of ore-stage fluid inclusions indicate a significant contribution of magmatic volatiles. This study tested different formation models by applying an existing numerical process model for porphyry-epithermal systems with a magmatic intrusion located either at a distance of about 10 km underneath the nearest active volcano or hidden underneath the deposit. The results show that the migration of the ore fluid over a 10-km distance results in metal precipitation by cooling before the deposit site is reached. In contrast, simulations with a hidden magmatic intrusion beneath the Pirquitas deposit are in line with field observations, which include mineralized hydrothermal breccias in the deposit area. N2 - Magmatisch-hydrothermale Systeme bilden eine Vielzahl von Erzlagerstätten in unterschiedlicher Entfernung zu wasserhaltigen Magmakammern in der oberen Erdkruste, von der Greisenbildung in der Dachzone der Intrusion über die Porphyrmineralisierung in mittleren Tiefen bis hin zu epithermalen Ganglagerstätten nahe der Erdoberfläche. Die physikalischen Transportprozesse und chemischen Ausfällungsmechanismen variieren zwischen den verschiedenen Lagerstättentypen und werden immer noch häufig diskutiert. Die meisten magmatisch-hydrothermalen Erzlagerstätten befinden sich entlang des Pazifischen Feuerrings, dessen östlicher Teil durch die mesozoischen bis känozoischen orogenen Gürtel des westlichen Nord- und Südamerikas, zusammen die Amerikanische Kordillere, vertreten ist. Zu den wichtigsten magmatisch-hydrothermalen Erzlagerstätten entlang der Amerikanischen Kordillere gehören (i) Cu(-Mo-Au)-Porphyrlagerstätten (entlang der westlichen Kordilleren Mexikos, der westlichen USA, Kanadas, Chiles, Perus und Argentiniens); (ii) Mo-Lagerstätten vom Climax- (und Sub-)Typ (Colorado Mineral Belt und nördliches New Mexico); und (iii) porphyrische und epithermale Sn(-W-Ag)-Lagerstätten vom IS-Typ des Zentralandinen-Zinngürtels (Bolivien, Peru und Nordargentinien). Die einzelnen Studien dieser Arbeit konzentrieren sich in erster Linie auf die Bildung verschiedener Vererzungsstypen, die sich in unterschiedlicher Entfernung zur Intrusion in magmatisch-hydrothermalen Systemen entlang der amerikanischen Kordillere befinden. Dazu gehören (i) zwei geochemische Einzelstudien über die Sweet Home-Mine im Colorado Mineral Belt (potenzielles Endglied der peripheren Mineralisierung des Climax-Typs); (ii) eine numerische Modellierungsstudie in einem generischen Cu-Porphyr-Setup; und (iii) eine numerische Modellierungsstudie über die Pirquitas-Mine des Zentralandinen-Zinn-Typs in Nordwest-Argentinien. Mikrothermometrische Daten von Fluideinschlüssen, die in Greisenquarz und -fluorit aus der Sweet Home-Mine (Detroit City Portal) eingeschlossen sind, deuten darauf hin, dass die Mineralisierung im Frühstadium aus CO2-haltigen Fluiden mit niedrigem bis mittlerem Salzgehalt (1,5-11,5 Gew.-% NaCl-Äquivalent) bei Temperaturen zwischen 360 und 415 °C und in einer Tiefe von mindestens 3,5 km ausgefällt wurde. Daten zu stabilen Isotopen und Edelgasisotopen zeigen, dass die Greisenbildung und die Buntmetallvererzung in der Sweet Home-Mine mit Fluiden unterschiedlichen Ursprungs in Verbindung stehen. Frühe magmatische Fluide waren die Hauptquelle für aus dem Mantel stammende Volatile (CO2, H2S/SO2, Edelgase), die sich anschließend mit erheblichen Mengen erhitzten meteorischen Wassers vermischten. Die Vermischung von magmatischen Fluiden mit meteorischem Wasser wird durch die Zusammenhänge von δ2Hw-δ18Ow der Fluideinschlüsse belegt. Die tiefe hydrothermale Vererzung in der Sweet Home-Mine weist ähnliche Merkmale auf wie die tiefe hydrothermale Gangvererzung in Mo-Lagerstätten vom Climax-Typ oder in deren Peripherie. Dies deutet darauf hin, dass die Fluidmigration und die Ausfällung von Erz und Gangmineralen in der Sweet Home-Mine durch eine tief sitzende magmatische Intrusion angeregt wurde. Die zweite Studie über die Sweet Home Mine präsentiert ein Re-Os-Molybdänit-Alter von 65,86±0,30 Ma aus einer Mo-vererzten Abschiebung, namentlich der Contact Structure, und ein multimineralisches Rb-Sr-Isochronen-Alter von 26,26±0,38 Ma und 25,3±3,0 Ma von Gangmineralen in Greisenvergesellschaftungen. Die Altersdaten deuten darauf hin, dass die Vererzungen in der Sweet Home Mine während zweier separater Ereignisse entstand: In der späten Kreidezeit (im Zusammenhang mit der Laramidischen Orogenese) und im Oligozän (im Zusammenhang mit dem Rio Grande Rift). Das Alter der Mo-Vererzung in der Sweet Home Mine liegt demnach eindeutig vor dem der oligozänen Climax-Lagerstätten anderswo im Colorado Mineral Belt. Die Re-Os- und Rb-Sr-Alter grenzen auch das Alter der jüngsten Deformation entlang der Contact Structure, die von spätkreidezeitlichen und oligozänen Fluiden genutzt und/oder geschnitten wurde, auf 62,77±0,50 Ma und 26,26±0,38 Ma ein. Entlang der Contact Structure ist spätkreidezeitlicher Molybdänit räumlich mit Mineralen aus dem Oligozän in demselben Gangsystem vergesellschaftet, was eine Rekristallisierung oder Ausfällung von Molybdänit durch oligozäne Fluide ausschließt. Die Erzausfällung in porphyrischen Kupfersystemen ist im Allgemeinen durch eine Metallzonierung (Cu-Mo bis Zn-Pb-Ag) gekennzeichnet, die vermutlich mit der Abnahme der Löslichkeit während der Fluidabkühlung, den Wechselwirkungen zwischen Fluid und Gestein, der Partitionierung während der Phasenseparation des Fluids und der Mischung mit externen Fluiden in Zusammenhang steht. Die numerische Modellierung, die in einer generischen Porphyr-Cu-Umgebung durchgeführt wurde, stellt neue Fortschritte eines numerischen Prozessmodells dar, indem sie veröffentlichte Randbedingungen für die temperatur- und salinitätsabhängige Löslichkeit von Cu, Pb und Zn im Erzfluid berücksichtigt. Diese Studie untersucht die Rolle der Dampf-Sole-Separation, der Halitsättigung, des anfänglichen Metallgehalts, der Fluidmischung und der Remobilisierung als Einflussfaktoren erster Ordnung der physikalischen Hydrologie auf die Erzbildung. Die Ergebnisse zeigen, dass die magmatischen Dampf- und Solephasen mit unterschiedlichen Verweilzeiten, aber als mischbare Fluide aufsteigen, wobei eine Erhöhung des Salzgehalts zu einem metall-ungesättigten Gesamtfluid führt. Die Freisetzungsraten der magmatischen Fluide wirken sich auf die Lage der thermohalinen Fronten aus, was zu widersprüchlichen Mechanismen für die Erzausfällung führt: Höhere Raten führen zu einer Halitsättigung ohne signifikante Metallzonierung, niedrigere Raten erzeugen zonierte Erzschalen aufgrund der Mischung mit meteorischem Wasser. Unterschiedliche Metallgehalte können sich auf die Reihenfolge der endgültigen Metallausfällung auswirken. Die Wiederauflösung bereits ausgefällter Metalle führt zu zonierten Erzschalenmustern in periphereren Bereichen und entkoppelt auch die Halitsättigung von der Erzausfällung. Die epithermale Pirquitas Sn-Ag-Pb-Zn-Mine im Nordwesten Argentiniens befindet sich in einem Bereich metamorphisierter Sedimente ohne geologische Hinweise auf vulkanische Aktivitäten in einer Entfernung von etwa 10 km zur Lagerstätte. Jüngste geochemische Untersuchungen von Fluideinschlüssen im Erzstadium deuten jedoch auf einen bedeutenden Beitrag von magmatischen Volatilen hin. In dieser Studie wurden verschiedene Entstehungsmodelle getestet, indem ein bestehendes numerisches Prozessmodell für porphyrisch-epithermale Systeme mit einer magmatischen Intrusion angewandt wurde, die sich entweder in einer Entfernung von etwa 10 km unterhalb des nächstgelegenen aktiven Vulkans oder verborgen unterhalb der Lagerstätte befindet. Die Ergebnisse zeigen, dass die Migration der Erzflüssigkeit über eine Entfernung von 10 km zu einer Metallausfällung durch Abkühlung führt, bevor die Lagerstätte erreicht wird. Im Gegensatz dazu stimmen die Simulationen mit einer verborgenen magmatischen Intrusion unter der Pirquitas-Lagerstätte mit den Feldbeobachtungen überein, die mineralisierte hydrothermale Brekzien im Lagerstättenbereich umfassen. KW - magmatic KW - hydrothermal KW - ore KW - deposits KW - copper KW - lead KW - zinc KW - molybdenum KW - numerical KW - modeling KW - Sweet KW - Home KW - Pirquitas KW - Colorado KW - Argentina KW - Argentinien KW - Colorado KW - Home KW - Pirquitas KW - Sweet KW - Kupfer KW - Lagerstätte KW - hydrothermal KW - Blei KW - magmatisch KW - Modellierung KW - Molybdän KW - numerisch KW - Erz KW - Zink Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-611402 ER -