TY - THES A1 - Miteva, Rositsa Stoycheva T1 - Electron acceleration at localized wave structures in the solar corona T1 - Elektronenbeschleunigung an lokalen Wellenstrukturen in der Sonnenkorona N2 - Our dynamic Sun manifests its activity by different phenomena: from the 11-year cyclic sunspot pattern to the unpredictable and violent explosions in the case of solar flares. During flares, a huge amount of the stored magnetic energy is suddenly released and a substantial part of this energy is carried by the energetic electrons, considered to be the source of the nonthermal radio and X-ray radiation. One of the most important and still open question in solar physics is how the electrons are accelerated up to high energies within (the observed in the radio emission) short time scales. Because the acceleration site is extremely small in spatial extent as well (compared to the solar radius), the electron acceleration is regarded as a local process. The search for localized wave structures in the solar corona that are able to accelerate electrons together with the theoretical and numerical description of the conditions and requirements for this process, is the aim of the dissertation. Two models of electron acceleration in the solar corona are proposed in the dissertation: I. Electron acceleration due to the solar jet interaction with the background coronal plasma (the jet--plasma interaction) A jet is formed when the newly reconnected and highly curved magnetic field lines are relaxed by shooting plasma away from the reconnection site. Such jets, as observed in soft X-rays with the Yohkoh satellite, are spatially and temporally associated with beams of nonthermal electrons (in terms of the so-called type III metric radio bursts) propagating through the corona. A model that attempts to give an explanation for such observational facts is developed here. Initially, the interaction of such jets with the background plasma leads to an (ion-acoustic) instability associated with growing of electrostatic fluctuations in time for certain range of the jet initial velocity. During this process, any test electron that happen to feel this electrostatic wave field is drawn to co-move with the wave, gaining energy from it. When the jet speed has a value greater or lower than the one, required by the instability range, such wave excitation cannot be sustained and the process of electron energization (acceleration and/or heating) ceases. Hence, the electrons can propagate further in the corona and be detected as type III radio burst, for example. II. Electron acceleration due to attached whistler waves in the upstream region of coronal shocks (the electron--whistler--shock interaction) Coronal shocks are also able to accelerate electrons, as observed by the so-called type II metric radio bursts (the radio signature of a shock wave in the corona). From in-situ observations in space, e.g., at shocks related to co-rotating interaction regions, it is known that nonthermal electrons are produced preferably at shocks with attached whistler wave packets in their upstream regions. Motivated by these observations and assuming that the physical processes at shocks are the same in the corona as in the interplanetary medium, a new model of electron acceleration at coronal shocks is presented in the dissertation, where the electrons are accelerated by their interaction with such whistlers. The protons inflowing toward the shock are reflected there by nearly conserving their magnetic moment, so that they get a substantial velocity gain in the case of a quasi-perpendicular shock geometry, i.e, the angle between the shock normal and the upstream magnetic field is in the range 50--80 degrees. The so-accelerated protons are able to excite whistler waves in a certain frequency range in the upstream region. When these whistlers (comprising the localized wave structure in this case) are formed, only the incoming electrons are now able to interact resonantly with them. But only a part of these electrons fulfill the the electron--whistler wave resonance condition. Due to such resonant interaction (i.e., of these electrons with the whistlers), the electrons are accelerated in the electric and magnetic wave field within just several whistler periods. While gaining energy from the whistler wave field, the electrons reach the shock front and, subsequently, a major part of them are reflected back into the upstream region, since the shock accompanied with a jump of the magnetic field acts as a magnetic mirror. Co-moving with the whistlers now, the reflected electrons are out of resonance and hence can propagate undisturbed into the far upstream region, where they are detected in terms of type II metric radio bursts. In summary, the kinetic energy of protons is transfered into electrons by the action of localized wave structures in both cases, i.e., at jets outflowing from the magnetic reconnection site and at shock waves in the corona. N2 - Die Sonne ist ein aktiver Stern, was sich nicht nur in den allseits bekannten Sonnenflecken, sondern auch in Flares manifestiert. Während Flares wird eine große Menge gespeicherter, magnetischer Energie in einer kurzen Zeit von einigen Sekunden bis zu wenigen Stunden in der Sonnenkorona freigesetzt. Dabei werden u.a. energiereiche Elektronen erzeugt, die ihrerseits nichtthermische Radio- und Röntgenstrahlung, wie sie z.B. am Observatorium für solare Radioastronomie des Astrophysikalischen Instituts Potsdam (AIP) in Tremsdorf und durch den NASA-Satelliten RHESSI beobachtet werden, erzeugen. Da diese Elektronen einen beträchtlichen Anteil der beim Flare freigesetzten Energie tragen, ist die Frage, wie Elektronen in kurzer Zeit auf hohe Energien in der Sonnenkorona beschleunigt werden, von generellem astrophysikalischen Interesse, da solche Prozesse auch in anderen Sternatmosphären und kosmischen Objekten, wie z.B. Supernova-Überresten, stattfinden. In der vorliegenden Dissertation wird die Elektronenbeschleunigung an lokalen Wellenstrukturen im Plasma der Sonnenkorona untersucht. Solche Wellen treten in der Umgebung der magnetischen Rekonnektion, die als ein wichtiger Auslöser von Flares angesehen wird, und in der Nähe von Stoßwellen, die infolge von Flares erzeugt werden, auf. Generell werden die Elektronen als Testteilchen behandelt. Sie werden durch ihre Wechselwirkung mit den elektrischen und magnetischen Feldern, die mit den Plasmawellen verbunden sind, beschleunigt. Infolge der magnetischen Rekonnektion als Grundlage des Flares werden starke Plasmaströmungen (sogenannte Jets) erzeugt. Solche Jets werden im Licht der weichen Röntgenstrahlung, wie z.B. durch den japanischen Satelliten YOHKOH, beobachtet. Mit solchen Jets sind solare Typ III Radiobursts als Signaturen von energiereichen Elektronenstrahlen in der Sonnenkorona verbunden. Durch die Wechselwirkung eines Jets mit dem umgebenden Plasma werden lokal elektrische Felder erzeugt, die ihrerseits Elektronen beschleunigen können. Dieses hier vorgestellte Szenarium kann sehr gut die Röntgen- und Radiobeobachtungen von Jets und den damit verbundenen Elektronenstrahlen erklären. An koronalen Stoßwellen, die infolge Flares entstehen, werden Elektronen beschleunigt, deren Signatur man in der solaren Radiostrahlung in Form von sogenannten Typ II Bursts beobachten kann. Stoßwellen in kosmischen Plasmen können mit Whistlerwellen (ein spezieller Typ von Plasmawellen) verbunden sein. In der vorliegenden Arbeit wird ein Szenarium vorgestellt, das aufzeigt, wie solche Whistlerwellen an koronalen Stoßwellen erzeugt werden und durch ihre resonante Wechselwirkung mit den Elektronen dieselben beschleunigen. Dieser Prozess ist effizienter als bisher vorgeschlagene Mechanismen und kann deshalb auch auf andere Stoßwellen im Kosmos, wie z.B. an Supernova-Überresten, zur Erklärung der dort erzeugten Radio- und Röntgenstrahlung dienen. KW - Elektronenbeschleunigung KW - Sonnenkorona KW - Jets KW - Stoßwellen KW - Nichtlineare Wellen KW - Electron acceleration KW - Solar corona KW - Jets KW - Shock waves KW - Nonlinear waves Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14775 ER - TY - THES A1 - Saad Hassanin, Alshaimaa T1 - Dynamic coronal mass ejection process and magnetic reconnection T1 - Dynamische koronale Massenauswürfe und magnetische Rekonnexion N2 - The Sun is the nearest star to the Earth. It consists of an interior and an atmosphere. The convection zone is the outermost layer of the solar interior. A flux rope may emerge as a coherent structure from the convection zone into the solar atmosphere or be formed by magnetic reconnection in the atmosphere. A flux rope is a bundle of magnetic field lines twisting around an axis field line, creating a helical shape by which dense filament material can be supported against gravity. The flux rope is also considered as the key structure of the most energetic phenomena in the solar system, such as coronal mass ejections (CMEs) and flares. These magnetic flux ropes can produce severe geomagnetic storms. In particular, to improve the ability to forecast space weather, it is important to enrich our knowledge about the dynamic formation of flux ropes and the underlying physical mechanisms that initiate their eruption, such as a CME. A confined eruption consists of a filament eruption and usually an associated are, but does not evolve into a CME; rather, the moving plasma is halted in the solar corona and usually seen to fall back. The first detailed observations of a confined filament eruption were obtained on 2002 May 27by the TRACE satellite in the 195 A band. So, in the Chapter 3, we focus on a flux rope instability model. A twisted flux rope can become unstable by entering the kink instability regime. We show that the kink instability, which occurs if the twist of a flux rope exceeds a critical value, is capable of initiating of an eruption. This model is tested against the well observed confined eruption on 2002 May 27 in a parametric magnetohydrodynamic (MHD) simulation study that comprises all phases of the event. Very good agreement with the essential observed properties is obtained, only except for a relatively poor matching of the initial filament height. Therefore, in Chapter 4, we submerge the center point of the flux rope deeper below the photosphere to obtain a flatter coronal rope section and a better matching with the initial height profile of the erupting filament. This implies a more realistic inclusion of the photospheric line tying. All basic assumptions and the other parameter settings are kept the same as in Chapter 3. This complement of the parametric study shows that the flux rope instability model can yield an even better match with the observational data. We also focus in Chapters 3 and 4 on the magnetic reconnection during the confined eruption, demonstrating that it occurs in two distinct locations and phases that correspond to the observed brightenings and changes of topology, and consider the fate of the erupting flux, which can reform a (less twisted) flux rope. The Sun also produces series of homologous eruptions, i.e. eruptions which occur repetitively in the same active region and are of similar morphology. Therefore, in Chapter 5, we employ the reformed flux rope as a new initial condition, to investigate the possibility of subsequent homologous eruptions. Free magnetic energy is built up by imposing motions in the bottom boundary, such as converging motions, leading to flux cancellation. We apply converging motions in the sunspot area, such that a small part of the flux from the sunspots with different polarities is transported toward the polarity inversion line (PIL) and cancels with each other. The reconnection associated with the cancellation process forms more helical magnetic flux around the reformed flux rope, which leads to a second and a third eruption. In this study, we obtain the first MHD simulation results of a homologous sequence of eruptions that show a transition from a confined to two ejective eruptions, based on the reformation of a flux rope after each eruption. N2 - Die Sonne ist der uns am nächsten benachbarte Stern. Sie besteht aus einem Inneren und einer Atmosphäre. Die Konvektionszone ist die äußerste Schicht des Inneren. Eine magnetische Flussröhre kann als kohärente Struktur aus der Konvektionszone in die Atmosphäre aufsteigen oder durch magnetische Rekonnexion in der Atmosphäre gebildet werden. Unter magnetischer Flussröhre wird hier ein Bündel magnetischer Feldlinien verstanden, die um eine zentrale Feldlinie herum verdrillt sind. In der entstehenden helikalen Form der Feldlinien kann dichtes Filamentmaterial gegen die Gravitation magnetisch gestützt werden. Diese Flussröhren werden auch als ein Schlüsselelement der energetischsten Erscheinungen in unserem Sonnensystem, nämlich koronaler Massenauswürfe (CMEs) und Flares, angesehen. Auf diesem Wege können solare magnetische Flussröhren starke geomagnetische Stürme erzeugen. Für Voraussagen des Raumwetters ist es von entscheidender Bedeutung, sowohl die dynamischen Prozesse der Flussröhrenbildung zu verstehen als auch die physikalischen Mechanismen, die ihrer Eruption, z.B. einem CME, zugrunde liegen. Eine beschränkte Filamenteruption besteht aus einer Filamentaktivierung und üblicherweise einem mit ihr verbundenen Flare, wobei die Entwicklung zu einem CME jedoch ausbleibt; vielmehr wird aufsteigendes Plasma in der Korona gehalten und meist kann sein Rückfall beobachtet werden. Die ersten detaillierten Beobachtungen einer beschränkten Filamenteruption wurden am 27. Mai 2002 vom TRACE-Satelliten im 195A-Band gewonnen. Zu ihrer Analyse wird in Kapitel 3 die Instabilit� at einer Flussröhre untersucht. Eine verdrillte Flussröhre kann instabil gegenüber der Knick-(Kink-)Instabilität werden. Wir zeigen, dass die Knick-Instabilität, die auftritt, wenn die Verdrillung einen kritischen Wert überschreitet, eine Eruption auslösen kann. Eine parametrische magnetohydrodynamischen (MHD-) Simulation, die alle Phasen des Ereignisses umfasst, wird mit den Beobachtungen vom 27. Mai 2002 verglichen. Hinsichtlich der wesentlichen Eigenschaften wird eine sehr gute Übereinstimmung der Simulationsergebnisse mit den Beobachtungen festgestellt, allerdings mit Ausnahme der Anfangshöhe des Filamentes. Deshalb wird in Kapitel 4 das Zentrum der Flussröhre tiefer unterhalb das Niveau der Photosphäre gelegt. Das führt zu einem acheren koronalen Flussröhren-Abschnitt und einer realistischeren Modellierung der Feldlinienverankerung in der Photosphäre. Diese komplementäre parametrische Untersuchung zeigt eine noch bessere Übereinstimmung mit den Beobachtungen. In den Kapiteln 3 und 4 liegt ein spezielles Augenmerk auch auf der magnetischen Rekonnexion im Verlaufe der beschränkten Eruption. Es stellt sich heraus, dass die Rekonnexion an zwei unterschiedlichen Orten und in zwei unterschiedlichen Phasen stattfindet, die durch verstärkte Strahlungsemission und Änderung der magnetischen Topologie charakterisiert sind. In den späten Stadien der Entwicklung kommt es zur Neubildung einer (weniger verdrillten) Flussröhre. Die Sonne produziert auch Serien homologer Eruptionen, die wiederholt mit ähnlicher Morphologie in derselben aktiven Region auftreten. In Kapitel 5 wird die neu gebildete Flussröhre als neue Anfangsbedingung verwendet, um die Möglichkeit nachfolgender homologer Eruptionen zu untersuchen. Photosphärische Bewegungen speisen Energie in das Magnetfeld ein. Wir verwenden konvergierende Bewegungen, die die Flüsse von Flecken unterschiedlicher Polarität zur Inversionslinie der Polarität transportieren und dort teilweise neutralisieren. Die damit verbundene Rekonnexion erzeugt helikalen magnetischen Fluss um die neu gebildete Flussröhre herum, was zu einer zweiten und einer dritten Eruption führt. Unsere Simulationen einer Serie homologer Eruptionen zeigen erstmals einen Übergang von einer beschränkten Eruption zu zwei ejektiven Eruptionen. KW - solar corona KW - solar eruption KW - magnetohydrodynamic KW - instability KW - Sonnenkorona KW - solare Eruption KW - Magnetohydrodynamik KW - Instabiltät Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419626 ER -