TY - THES A1 - Fischer, Jost Leonhardt T1 - Nichtlineare Kopplungsmechanismen akustischer Oszillatoren am Beispiel der Synchronisation von Orgelpfeifen T1 - Nonlinear coupling mechanisms of acoustical oscillators using the example of synchronization of organ pipes N2 - In dieser Arbeit werden nichtlineare Kopplungsmechanismen von akustischen Oszillatoren untersucht, die zu Synchronisation führen können. Aufbauend auf die Fragestellungen vorangegangener Arbeiten werden mit Hilfe theoretischer und experimenteller Studien sowie mit Hilfe numerischer Simulationen die Elemente der Tonentstehung in der Orgelpfeife und die Mechanismen der gegenseitigen Wechselwirkung von Orgelpfeifen identifiziert. Daraus wird erstmalig ein vollständig auf den aeroakustischen und fluiddynamischen Grundprinzipien basierendes nichtlinear gekoppeltes Modell selbst-erregter Oszillatoren für die Beschreibung des Verhaltens zweier wechselwirkender Orgelpfeifen entwickelt. Die durchgeführten Modellrechnungen werden mit den experimentellen Befunden verglichen. Es zeigt sich, dass die Tonentstehung und die Kopplungsmechanismen von Orgelpfeifen durch das entwickelte Oszillatormodell in weiten Teilen richtig beschrieben werden. Insbesondere kann damit die Ursache für den nichtlinearen Zusammenhang von Kopplungsstärke und Synchronisation des gekoppelten Zwei-Pfeifen Systems, welcher sich in einem nichtlinearen Verlauf der Arnoldzunge darstellt, geklärt werden. Mit den gewonnenen Erkenntnissen wird der Einfluss des Raumes auf die Tonentstehung bei Orgelpfeifen betrachtet. Dafür werden numerische Simulationen der Wechselwirkung einer Orgelpfeife mit verschiedenen Raumgeometrien, wie z. B. ebene, konvexe, konkave, und gezahnte Geometrien, exemplarisch untersucht. Auch der Einfluss von Schwellkästen auf die Tonentstehung und die Klangbildung der Orgelpfeife wird studiert. In weiteren, neuartigen Synchronisationsexperimenten mit identisch gestimmten Orgelpfeifen, sowie mit Mixturen wird die Synchronisation für verschiedene, horizontale und vertikale Pfeifenabstände in der Ebene der Schallabstrahlung, untersucht. Die dabei erstmalig beobachteten räumlich isotropen Unstetigkeiten im Schwingungsverhalten der gekoppelten Pfeifensysteme, deuten auf abstandsabhängige Wechsel zwischen gegen- und gleichphasigen Sychronisationsregimen hin. Abschließend wird die Möglichkeit dokumentiert, das Phänomen der Synchronisation zweier Orgelpfeifen durch numerische Simulationen, also der Behandlung der kompressiblen Navier-Stokes Gleichungen mit entsprechenden Rand- und Anfangsbedingungen, realitätsnah abzubilden. Auch dies stellt ein Novum dar. N2 - In this work non-linear coupling mechanisms in acoustic oscillator systems are examined which can lead to synchronization phenomena. This mechanisms are investigated in particular on organ pipes. Building up on the questions of preceding works the elements of the sound generation are identified using detailed experimental and theoretical studies, as well as numerical simulations. Furthermore the organ pipes interaction mechanisms of the mutual coupling are developed. This leads to a non-linear coupled oscillator model which is developed on the aeroacoustical and fluiddynamical first principles. The carried out model calculations are compared to the experimental results from preceding works. It appears that the sound generation and the coupling mechanisms are properly described by the developed nonlinear coupled model of self-sustained oscillators. In particular the cause can be cleared with it for the non-linear edges of the Arnold tongue of the coupled two-pipe system. With the new knowledge the influence of various space geometries on the sound generation of organ pipes is investigated. With numerical simulations the interaction of an organ pipe and different space geometries, like plane, convex, concave, and ridged geometry is studied. Also the influence of so called swell boxes on the sound generation and the sound pattern of the organ pipe is studied. In further new synchronization experiments with precisely equally tuned pairs of organ pipes, as well as with mixtures the synchronization is examined for various grids of horizontal and vertical pipe distances in the 2D-plane of sound radiation. The spatial discontinuities observed in the oscillation behaviour of the coupled pipe systems, point to changes between anti-phase and in-phase regimes of sychronization depending on pipes distances. Finally the possibility is documented to describe the phenomenon of the synchronization of two organ pipes realisticaly by solving the compressible Navier-Stokes equations numerically. KW - Synchronisation KW - Orgelpfeifen KW - Simulation KW - Experiment KW - Modell KW - synchronization KW - organ pipes KW - simulation KW - experiment KW - model Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-71975 ER - TY - THES A1 - Müller, Jirka T1 - Untersuchungen zum flow-Erleben bei Experimenten als physikalische Lerngelegenheit N2 - In der vorliegenden Arbeit wird untersucht, in wie weit physikalische Experimente ein flow-Erleben bei Lernenden hervorrufen. Flow-Erleben wird als Motivationsursache gesehen und soll den Weg zu Freude und Glück darstellen. Insbesondere wegen dem oft zitierten Fachkräftemangel in naturwissenschaftlichen und technischen Berufen ist eine Motivationssteigerung in naturwissenschaftlichen Unterrichtsfächern wichtig. Denn trotz Leistungssteigerungen in internationalen Vergleichstests möchten in Deutschland deutlich weniger Schüler*innen einen solchen Beruf ergreifen als in anderen Industriestaaten. Daher gilt es, möglichst früh Schüler*innen für naturwissenschaftlich-technische Fächer zu begeistern und insbesondere im regelrecht verhassten Physikunterricht flow-Erleben zu erzeugen. Im Rahmen dieser Arbeit wird das flow-Erleben von Studierenden in klassischen Laborexperimenten und FELS (Forschend-Entdeckendes Lernen mit dem Smartphone) als Lernumgebung untersucht. FELS ist eine an die Lebenswelt der Schüler*innen angepasste Lernumgebung, in der sie mit Smartphones ihre eigene Lebenswelt experimentell untersuchen. Es zeigt sich, dass sowohl klassische Laborexperimente als auch in der Lebenswelt durchgeführte, smartphonebasierte Experimente flow-Erleben erzeugen. Allerdings verursachen die smartphonebasierten Experimente kaum Stressgefühle. Die in dieser Arbeit herausgefundenen Ergebnisse liefern einen ersten Ansatz, der durch Folgestudien erweitert werden sollte. N2 - The present work examines to what extent physical experiments induce a flow-experience in students. Experiencing flow is seen as a source of motivation and should represent the path to joy and happiness. In particular, because of the often-cited shortage of employees in the natural sciences and technical professions, increasing motivation in natural sciences subjects is important. Because despite performance increases in international comparative tests, significantly fewer students in Germany want to take up such a profession than in other industrialized countries. It is therefore important to get students enthusiastic about scientific and technical subjects as early as possible and, in particular, to create a flow experience in the downright hated physics class. In the context of this work, the flow-experience of students is examined as a learning environment in classic laboratory experiments and FELS (inquiry-based learning with the smartphone, based on the German term: Forschend-Entdeckendes Lernen mit dem Smartphone). FELS is a learning environment adapted to the students' living environment, in which they use smartphones to experimentally examine their own living environment. It turns out that both classic laboratory experiments and smartphone-based experiments create flow-experiences. However, the smartphone-based experiments hardly cause any feelings of stress. The results found in this work provide a first approach, which should be expanded through follow-up studies. T2 - Examining the flow-experience in experiments as a physical learning opportunity KW - Flow KW - Smartphone KW - Experimente KW - Physikdidaktik KW - FELS KW - Lernumgebung KW - blended learning KW - Forschend Entdeckendes Lernen KW - inquiry based learning KW - physics education KW - learning environment KW - experiment Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482879 ER -