TY - THES A1 - Topaj, Dmitri T1 - Synchronization transitions in complex systems N2 - Gegenstand dieser Arbeit ist die Untersuchung generischer Synchronisierungsphänomene in interagierenden komplexen Systemen. Diese Phänomene werden u.a. in gekoppelten deterministischen chaotischen Systemen beobachtet. Bei sehr schwachen Interaktionen zwischen individuellen Systemen kann ein Übergang zum schwach kohärenten Verhalten der Systeme stattfinden. In gekoppelten zeitkontinuierlichen chaotischen Systemen manifestiert sich dieser Übergang durch den Effekt der Phasensynchronisierung, in gekoppelten chaotischen zeitdiskreten Systemen durch den Effekt eines nichtverschwindenden makroskopischen Feldes. Der Übergang zur Kohärenz in einer Kette lokal gekoppelter Oszillatoren, beschrieben durch Phasengleichungen, wird im Bezug auf die Symmetrien des Systems untersucht. Es wird gezeigt, daß die durch die Symmetrien verursachte Reversibilität des Systems nichttriviale topologische Eigenschaften der Trajektorien bedingt, so daß das als dissipativ konstruierte System in einem ganzen Parameterbereich quasi-Hamiltonische Züge aufweist, d.h. das Phasenvolumen ist im Schnitt erhalten, und die Lyapunov-Exponenten sind paarweise symmetrisch. Der Übergang zur Kohärenz in einem Ensemble global gekoppelter chaotischer Abbildungen wird durch den Verlust der Stabilität des entkoppelten Zustandes beschrieben. Die entwickelte Methode besteht darin, die Selbstkonsistenz des makroskopischen Feldes aufzuheben, und das Ensemble in Analogie mit einem Verstärkerschaltkreis mit Rückkopplung durch eine komplexe lineare Übertragungssfunktion zu charakterisieren. Diese Theorie wird anschließend für einige theoretisch interessanten Fälle verallgemeinert. N2 - Subject of this work is the investigation of generic synchronization phenomena in interacting complex systems. These phenomena are observed, among all, in coupled deterministic chaotic systems. At very weak interactions between individual systems a transition to a weakly coherent behavior of the systems can take place. In coupled continuous time chaotic systems this transition manifests itself with the effect of phase synchronization, in coupled chaotic discrete time systems with the effect of non-vanishing macroscopic mean field. Transition to coherence in a chain of locally coupled oscillators described with phase equations is investigated with respect to the symmetries in the system. It is shown that the reversibility of the system caused by these symmetries results to non-trivial topological properties of trajectories so that the system constructed to be dissipative reveals in a whole parameter range quasi-Hamiltonian features, i.e. the phase volume is conserved on average and Lyapunov exponents come in symmetric pairs. Transition to coherence in an ensemble of globally coupled chaotic maps is described with the loss of stability of the disordered state. The method is to break the self-consistensy of the macroscopic field and to characterize the ensemble in analogy to an amplifier circuit with feedback with a complex linear transfer function. This theory is then generalized for several cases of theoretic interest. KW - Synchronisierung KW - komplex KW - System KW - komplexe Systeme KW - gekoppelt KW - chaotisch KW - Chaos KW - Interaktion KW - Übergang KW - P hasensynchronisierung KW - Phase KW - Feld KW - Effekt KW - synchronization KW - complex KW - system KW - complex systems KW - coupled KW - chaotic KW - chaos KW - interaction KW - transition KW - phase KW - phase synchronization KW - field KW - meanfield KW - o Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000367 ER - TY - JOUR A1 - Becker, Michael A1 - Neumann, Marko A1 - Tetzner, Julia A1 - Böse, Susanne A1 - Knoppick, Henrike A1 - Maaz, Kai A1 - Baumert, Jürgen A1 - Lehmann, Rainer T1 - Development? Effects of the transition into academically selective schools JF - The journal of educational psychology N2 - The present study investigates school context effects on psychosocial characteristics (academic self-concept, peer relations, school satisfaction, and school anxiety) of high-achieving and gifted students. Students who did or did not make an early transition from elementary to secondary schools for high-achieving and gifted students in 5th grade in Berlin, Germany, are compared in their psychosocial development. The sample comprises 155 early-entry students who moved to an academically selective secondary school (Gymnasium) and 3,169 regular students who remained in elementary school until the end of 6th grade. Overall, a complex pattern of psychosocial development emerged for all students, with both positive and negative outcomes being observed. Specifically, the transition into academically selective learning environments seemed to come at some cost for psychosocial development. Propensity score matching analysis isolating the effects of selective school intake and the school context effect itself revealed negative contextual effects of early transition to Gymnasium on academic self-concept and school anxiety; additionally, the positive trend in peer relations observed among regular students was not discernible among early-entry students. KW - psychosocial development KW - transition KW - ability grouping KW - longitudinal design KW - propensity score matching Y1 - 2014 U6 - https://doi.org/10.1037/a0035425 SN - 0022-0663 SN - 1939-2176 VL - 106 IS - 2 SP - 555 EP - 568 PB - American Psychological Association CY - Washington ER - TY - GEN A1 - Wirth, Jonas A1 - Neumann, Rainer A1 - Antonietti, Markus A1 - Saalfrank, Peter T1 - Adsorption and photocatalytic splitting of water on graphitic carbon nitride BT - a combined first principles and semiempirical study N2 - Graphitic carbon nitride, g-C₃N₄, is a promising organic photo-catalyst for a variety of redox reactions. In order to improve its efficiency in a systematic manner, however, a fundamental understanding of the microscopic interaction between catalyst, reactants and products is crucial. Here we present a systematic study of water adsorption on g-C₃N₄ by means of density functional theory and the density functional based tight-binding method as a prerequisite for understanding photocatalytic water splitting. We then analyze this prototypical redox reaction on the basis of a thermodynamic model providing an estimate of the overpotential for both water oxidation and H⁺ reduction. While the latter is found to occur readily upon irradiation with visible light, we derive a prohibitive overpotential of 1.56 eV for the water oxidation half reaction, comparing well with the experimental finding that in contrast to H₂ production O₂ evolution is only possible in the presence of oxidation cocatalysts. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 172 KW - augmented-wave method KW - hydrogen KW - initio molecular-dynamics KW - oxidation KW - photooxidation KW - reduction KW - simulations KW - tight-binding KW - transition KW - visible-light Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74391 SP - 15917 EP - 15926 ER - TY - JOUR A1 - Wirth, Jonas A1 - Neumann, Rainer A1 - Antonietti, Markus A1 - Saalfrank, Peter T1 - Adsorption and photocatalytic splitting of water on graphitic carbon nitride BT - a combined first principles and semiempirical study JF - physical chemistry, chemical physics : PCCP N2 - Graphitic carbon nitride, g-C₃N₄, is a promising organic photo-catalyst for a variety of redox reactions. In order to improve its efficiency in a systematic manner, however, a fundamental understanding of the microscopic interaction between catalyst, reactants and products is crucial. Here we present a systematic study of water adsorption on g-C₃N₄ by means of density functional theory and the density functional based tight-binding method as a prerequisite for understanding photocatalytic water splitting. We then analyze this prototypical redox reaction on the basis of a thermodynamic model providing an estimate of the overpotential for both water oxidation and H⁺ reduction. While the latter is found to occur readily upon irradiation with visible light, we derive a prohibitive overpotential of 1.56 eV for the water oxidation half reaction, comparing well with the experimental finding that in contrast to H₂ production O₂ evolution is only possible in the presence of oxidation cocatalysts. KW - initio molecular-dynamics KW - augmented-wave method KW - visible-light KW - tight-binding KW - transition KW - oxidation KW - photooxidation KW - simulations KW - reduction KW - hydrogen Y1 - 2014 U6 - https://doi.org/10.1039/c4cp02021a SN - 1463-9076 SN - 1463-9084 VL - 2014 IS - 16 SP - 15917 EP - 15926 ER - TY - JOUR A1 - Banerjee, Pallavi A1 - Lipowsky, Reinhard A1 - Santer, Mark T1 - Coarse-grained molecular model for the Glycosylphosphatidylinositol anchor with and without protein JF - Journal of Chemical Theory and Computation N2 - Glycosylphosphatidylinositol (GPI) anchors are a unique class of complex glycolipids that anchor a great variety of proteins to the extracellular leaflet of plasma membranes of eukaryotic cells. These anchors can exist either with or without an attached protein called GPI-anchored protein (GPI-AP) both in vitro and in vivo. Although GPIs are known to participate in a broad range of cellular functions, it is to a large extent unknown how these are related to GPI structure and composition. Their conformational flexibility and microheterogeneity make it difficult to study them experimentally. Simplified atomistic models are amenable to all-atom computer simulations in small lipid bilayer patches but not suitable for studying their partitioning and trafficking in complex and heterogeneous membranes. Here, we present a coarse-grained model of the GPI anchor constructed with a modified version of the MARTINI force field that is suited for modeling carbohydrates, proteins, and lipids in an aqueous environment using MARTINI's polarizable water. The nonbonded interactions for sugars were reparametrized by calculating their partitioning free energies between polar and apolar phases. In addition, sugar-sugar interactions were optimized by adjusting the second virial coefficients of osmotic pressures for solutions of glucose, sucrose, and trehalose to match with experimental data. With respect to the conformational dynamics of GPI-anchored green fluorescent protein, the accessible time scales are now at least an order of magnitude larger than for the all-atom system. This is particularly important for fine-tuning the mutual interactions of lipids, carbohydrates, and amino acids when comparing to experimental results. We discuss the prospective use of the coarse-grained GPI model for studying protein-sorting and trafficking in membrane models. KW - Martini force-field KW - osmotic-pressure KW - potential-functions KW - aqueous-solution KW - dynamics KW - coefficient KW - simulation KW - trypanosoma KW - transition KW - parameters Y1 - 2020 U6 - https://doi.org/10.1021/acs.jctc.0c00056 SN - 1549-9626 SN - 1549-9618 VL - 16 IS - 6 PB - ACS Publications CY - Washington DC ER - TY - GEN A1 - Banerjee, Pallavi A1 - Lipowsky, Reinhard A1 - Santer, Mark T1 - Coarse-grained molecular model for the Glycosylphosphatidylinositol anchor with and without protein T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Glycosylphosphatidylinositol (GPI) anchors are a unique class of complex glycolipids that anchor a great variety of proteins to the extracellular leaflet of plasma membranes of eukaryotic cells. These anchors can exist either with or without an attached protein called GPI-anchored protein (GPI-AP) both in vitro and in vivo. Although GPIs are known to participate in a broad range of cellular functions, it is to a large extent unknown how these are related to GPI structure and composition. Their conformational flexibility and microheterogeneity make it difficult to study them experimentally. Simplified atomistic models are amenable to all-atom computer simulations in small lipid bilayer patches but not suitable for studying their partitioning and trafficking in complex and heterogeneous membranes. Here, we present a coarse-grained model of the GPI anchor constructed with a modified version of the MARTINI force field that is suited for modeling carbohydrates, proteins, and lipids in an aqueous environment using MARTINI's polarizable water. The nonbonded interactions for sugars were reparametrized by calculating their partitioning free energies between polar and apolar phases. In addition, sugar-sugar interactions were optimized by adjusting the second virial coefficients of osmotic pressures for solutions of glucose, sucrose, and trehalose to match with experimental data. With respect to the conformational dynamics of GPI-anchored green fluorescent protein, the accessible time scales are now at least an order of magnitude larger than for the all-atom system. This is particularly important for fine-tuning the mutual interactions of lipids, carbohydrates, and amino acids when comparing to experimental results. We discuss the prospective use of the coarse-grained GPI model for studying protein-sorting and trafficking in membrane models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1216 KW - Martini force-field KW - osmotic-pressure KW - potential-functions KW - aqueous-solution KW - dynamics KW - coefficient KW - simulation KW - trypanosoma KW - transition KW - parameters Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523742 SN - 1866-8372 IS - 6 ER - TY - JOUR A1 - Schifferle, Lukas A1 - Lobanov, Sergey S. T1 - Evolution of chemical bonding and spin-pairing energy in ferropericlase across Its spin transition JF - ACS Earth and Space Chemistry N2 - The evolution of chemical bonding in ferropericlase, (Mg,Fe)O, with pressure may affect the physical and chemical properties of the Earth's lower mantle. Here, we report high-pressure optical absorption spectra of single-crystalline ferropericlase ((Mg0.87Fe0.13)O) up to 135 GPa. Combined with a re-evaluation of published partial fluorescence yield X-ray absorption spectroscopy data, we show that the covalency of the Fe-O bond increases with pressure, but the iron spin transition at 57-76.5 GPa reverses this trend. The qualitative crossover in chemical bonding suggests that the spin-pairing transition weakens the Fe-O bond in ferropericlase. We find, that the spin transition in ferropericlase is caused by both the increase of the ligand field-splitting energy and the decrease in the spin-pairing energy of high-spin Fe2+. KW - high-pressure KW - diamond anvil cell KW - covalency KW - bond strength KW - iron KW - spin KW - transition Y1 - 2022 U6 - https://doi.org/10.1021/acsearthspacechem.2c00014 SN - 2472-3452 VL - 6 IS - 3 SP - 788 EP - 799 PB - American Chemical Society CY - Washington ER -