TY - THES A1 - Schattauer, Sylvia T1 - Hybride Dünnschicht-Solarzellen aus mesoporösem Titandioxid und konjugierten Polymeren T1 - Hybrid thin solar cells comprising mesoporous titanium dioxide and conjugated polymers N2 - Das Ziel dieser Arbeit ist die Untersuchung der aktiven Komponenten und ihrer Wechselwirkungen in teilorganischen Hybrid-Solarzellen. Diese bestehen aus einer dünnen Titandioxidschicht, kombiniert mit einer dünnen Polymerschicht. Die Effizienz der Hybrid-Solarzellen wird durch die Lichtabsorption im Polymer, die Dissoziation der gebildeten Exzitonen an der aktiven Grenzfläche zwischen TiO2 und Polymer, sowie durch Generation und Extraktion freier Ladungsträger bestimmt. Zur Optimierung der Solarzellen wurden grundlegende physikalische Wechselwirkungen zwischen den verwendeten Materialen sowie der Einfluss verschiedener Herstellungsparameter untersucht. Unter anderem wurden Fragen zum optimalen Materialeinsatz und Präparationsbedingungen beantwortet sowie grundlegende Einflüsse wie Schichtmorphologie und Polymerinfiltration näher betrachtet. Zunächst wurde aus unterschiedlich hergestelltem Titandioxid (Akzeptor-Schicht) eine Auswahl für den Einsatz in Hybrid-Solarzellen getroffen. Kriterium war hierbei die unterschiedliche Morphologie aufgrund der Oberflächenbeschaffenheit, der Film-Struktur, der Kristallinität und die daraus resultierenden Solarzelleneigenschaften. Für die anschließenden Untersuchungen wurden mesoporöse TiO2–Filme aus einer neuen Nanopartikel-Synthese, welche es erlaubt, kristalline Partikel schon während der Synthese herzustellen, als Elektronenakzeptor und konjugierte Polymere auf Poly(p-Phenylen-Vinylen) (PPV)- bzw. Thiophenbasis als Donatormaterial verwendet. Bei der thermischen Behandlung der TiO2-Schichten erfolgt eine temperaturabhängige Änderung der Morphologie, jedoch nicht der Kristallstruktur. Die Auswirkungen auf die Solarzelleneigenschaften wurden dokumentiert und diskutiert. Um die Vorteile der Nanopartikel-Synthese, die Bildung kristalliner TiO2-Partikel bei tiefen Temperaturen, nutzen zu können, wurden erste Versuche zur UV-Vernetzung durchgeführt. Neben der Beschaffenheit der Oxidschicht wurde auch der Einfluss der Polymermorphologie, bedingt durch Lösungsmittelvariation und Tempertemperatur, untersucht. Hierbei konnte gezeigt werden, dass u.a. die Viskosität der Polymerlösung die Infiltration in die TiO2-Schicht und dadurch die Effizienz der Solarzelle beeinflusst. Ein weiterer Ansatz zur Erhöhung der Effizienz ist die Entwicklung neuer lochleitender Polymere, welche möglichst über einen weiten spektralen Bereich Licht absorbieren und an die Bandlücke des TiO2 angepasst sind. Hierzu wurden einige neuartige Konzepte, z.B. die Kombination von Thiophen- und Phenyl-Einheiten näher untersucht. Auch wurde die Sensibilisierung der Titandioxidschicht in Anlehnung an die höheren Effizienzen der Farbstoffzellen in Betracht gezogen. Zusammenfassend konnten im Rahmen dieser Arbeit wichtige Einflussparameter auf die Funktion hybrider Solarzellen identifiziert und z.T. näher diskutiert werden. Für einige limitierende Faktoren wurden Konzepte zur Verbesserung bzw. Vermeidung vorgestellt. N2 - The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO2 and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO2 layer has been prepared. All these properties of the TiO2 films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO2 layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO2 layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and discussed. To take advantage of the nanoparticle synthesis, the formation of crystalline TiO2 particles by UV crosslinking and first solar cell measurements are presented. In addition to the nature of the TiO2 layer, the influence of polymer morphology is investigated. Different morphologies are realized by solvent variation and thermal annealing. It is shown that, among other factors, the viscosity of the polymer solution and the infiltration into the TiO2 layer mainly affects the efficiency of the solar cell. Another approach to increase the efficiency is the development of new hole-conducting polymers that absorb over a wide spectral range and which are adjusted to the energy levels of TiO2. Also new concepts, for example, the combination of thiophene- and phenyl-units into a copolymer are investigated in more detail. In summary, important parameters influencing the properties of hybrid solar cells are identified and discussed in more detail. For some limiting factors concepts to overcome these limitations are presented. KW - hybride Solarzellen KW - Titandioxid KW - Sintern KW - Polymer KW - hybrid thin solar cells KW - titanium dioxide KW - thermal treatment KW - polymers Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52619 ER - TY - JOUR A1 - Gulyakova, Anna A. A1 - Gorokhovatsky, Yuri A. A1 - frübing, Peter A1 - Gerhard, Reimund T1 - Relaxation Processes Determining the Electret Stability of High-Impact Polystyrene/Titanium-Dioxide Composite Films JF - IEEE transactions on dielectrics and electrical insulation N2 - The influence of relaxation processes on the thermal electret stability of high-impact polystyrene (HIPS) free-standing films filled with titanium dioxide (TiO2) of the rutile modification are investigated by means of a combination of dielectric methods (dielectric relaxation spectroscopy (DRS), thermally stimulated depolarization current (TSDC) and thermally stimulated surface-potential decay (TSSPD)), supplemented by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Films with 2, 4, 6 and 8 vol.% TiO2 are compared to each other and to non-filled samples. Filling HIPS with up to 8 vol.% of TiO2 enhances the elastic modulus below the glass transition and increases the thermal electret stability above the glass transition without significantly increasing the DC conductivity. The improvement of the electret stability is caused by the build-up of an interface polarization which decays only gradually if the glass transition is exceeded. Two kinds of Arrhenius processes are considered in order to explain the decay of the composite-polymer electrets: (1) charge release from chemical traps located at the phenyl rings of the polymer chain with an activation energy of E-a = 1.1 eV after passing the glass transition at about 100 degrees C and (2) charge release from traps formed by the TiO2 particles with E-a = 2.4 eV at temperatures above 130 degrees C. Finally, the activation energies are discussed with respect to their significance. KW - High-impact polystyrene KW - titanium dioxide KW - electret stability KW - dielectric relaxation Y1 - 2017 U6 - https://doi.org/10.1109/TDEI.2017.006587 SN - 1070-9878 SN - 1558-4135 VL - 24 SP - 2541 EP - 2548 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Guliakova, A. A. A1 - Gorokhovatsky, Yu. A. A1 - Galikhanov, M. F. A1 - Frübing, Peter T1 - Thermoactivational spectroscopy of the high impact polystyrene based composite films T1 - Термоактивационная спектроскопия композитных полимерных пленок на основе ударопрочного полистирола JF - St. Petersburg Polytechnic University Journal : Physics and Mathematics N2 - The relaxation processes in the high impact polystyrene (HIPS) films filled with 2, 4, 6 vol.% of titanium dioxide (TiO2) of the rutile modification have been studied using the thermally stimulated depolarization current (TSDC) technique. Three relaxation processes were observed in the composite HIPS films. The first one (a-relaxation peak) appeared at about 93 degrees C and represented the glass transition. The second peak p was a high-temperature part of the first one and overlapped it. The p peak was caused by the release and subsequent motion of excess charges deposited during the electret preparation or the polarization process. The third peak appeared at about 150 degrees C and occurred only in the spectra of the composite films. The overlapping peaks were separated by the thermal cleaning technique. The subsequent application of the numerical methods (the Tikhonov regularization technique) allowed to determine the activation energy of the second process and to compare the obtained value with the corresponding data on the dielectric relaxation. N2 - С помощью метода токов термостимулированной деполяризации (ТСД) исследованы релаксационные процессы в пленках ударопрочного полистирола (УПС) без наполнителя и с различным содержанием диоксида титана TiO2 (2, 4, 6 об.%). На кривых тока ТСД, полученных для композитных пленок, обнаружено три пика. Первый (α-релаксация) возникает при температуре около 93 °C и соответствует переходу вещества из стеклообразного состояния в высокоэластическое. Второй (ρ-пик) появляется как высокотемпературное плечо α-пика и соответствует процессу высвобождения и движения избыточных носителей заряда. Наличие третьего пика при температуре около 150 ºС характерно только для композитных пленок УПС. Разделение перекрывающихся α- и ρ-пиков проведено методом частичной термоочистки. Последующее применение регуляризующих алгоритмов Тихонова позволило определить энергию активации второго процесcа и сравнить полученное значение с результатом, полученным методом диэлектрической спектроскопии. KW - thermoactivational spectroscopy KW - high impact polystyrene KW - titanium dioxide Y1 - 2019 U6 - https://doi.org/10.18721/JPM.12401 SN - 2405-7223 SN - 2618-8686 SN - 2304-9782 VL - 12 IS - 4 SP - 9 EP - 16 PB - Elsevier CY - Amsterdam ER -