TY - GEN A1 - Olmer, Ruth A1 - Engels, Lena A1 - Usman, Abdulai A1 - Menke, Sandra A1 - Malik, Muhammad Nasir Hayat A1 - Pessler, Frank A1 - Göhring, Gudrun A1 - Bornhorst, Dorothee A1 - Bolten, Svenja A1 - Abdelilah-Seyfried, Salim A1 - Scheper, Thomas A1 - Kempf, Henning A1 - Zweigerdt, Robert A1 - Martin, Ulrich T1 - Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1182 KW - virus infection KW - progenitor cells KW - in vitro KW - telomere dysfunction KW - cord blood KW - cardiomyogenic differentiation KW - angiogenesis KW - efficient KW - aberrations KW - expression Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427095 SN - 1866-8372 IS - 5 ER - TY - JOUR A1 - Olmer, Ruth A1 - Engels, Lena A1 - Usman, Abdulai A1 - Menke, Sandra A1 - Malik, Muhammad Nasir Hayat A1 - Pessler, Frank A1 - Goehring, Gudrun A1 - Bornhorst, Dorothee A1 - Bolten, Svenja A1 - Abdelilah-Seyfried, Salim A1 - Scheper, Thomas A1 - Kempf, Henning A1 - Zweigerdt, Robert A1 - Martin, Ulrich T1 - Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture JF - Stem Cell Reports N2 - Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. KW - virus infection KW - progenitor cells KW - in vitro KW - telomere dysfunction KW - cord blood KW - cardiomyogenic differentiation KW - angiogenesis KW - efficient KW - aberrations KW - expression Y1 - 2017 U6 - https://doi.org/10.1016/j.stemcr.2018.03.017 SN - 2213-6711 VL - 10 IS - 5 PB - Springer CY - New York ER - TY - JOUR A1 - Otten, Cecile A1 - Knox, Jessica A1 - Boulday, Gwenola A1 - Eymery, Mathias A1 - Haniszewski, Marta A1 - Neuenschwander, Martin A1 - Radetzki, Silke A1 - Vogt, Ingo A1 - Haehn, Kristina A1 - De Luca, Coralie A1 - Cardoso, Cecile A1 - Hamad, Sabri A1 - Igual Gil, Carla A1 - Roy, Peter A1 - Albiges-Rizo, Corinne A1 - Faurobert, Eva A1 - von Kries, Jens P. A1 - Campillos, Monica A1 - Tournier-Lasserve, Elisabeth A1 - Derry, William Brent A1 - Abdelilah-Seyfried, Salim T1 - Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations JF - EMBO molecular medicine N2 - Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients. KW - angiogenesis KW - CCM KW - ERK5 KW - indirubin-3-monoxime KW - KLF2 Y1 - 2018 U6 - https://doi.org/10.15252/emmm.201809155 SN - 1757-4676 SN - 1757-4684 VL - 10 IS - 10 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Rödel, Claudia Jasmin A1 - Abdelilah-Seyfried, Salim T1 - A zebrafish toolbox for biomechanical signaling in cardiovascular development and disease JF - Current opinion in hematology N2 - Purpose of review The zebrafish embryo has emerged as a powerful model organism to investigate the mechanisms by which biophysical forces regulate vascular and cardiac cell biology during development and disease. A versatile arsenal of methods and tools is available to manipulate and analyze biomechanical signaling. This review aims to provide an overview of the experimental strategies and tools that have been utilized to study biomechanical signaling in cardiovascular developmental processes and different vascular disease models in the zebrafish embryo. Within the scope of this review, we focus on work published during the last two years. Recent findings Genetic and pharmacological tools for the manipulation of cardiac function allow alterations of hemodynamic flow patterns in the zebrafish embryo and various types of transgenic lines are available to report endothelial cell responses to biophysical forces. These tools have not only revealed the impact of biophysical forces on cardiovascular development but also helped to establish more accurate models for cardiovascular diseases including cerebral cavernous malformations, hereditary hemorrhagic telangiectasias, arteriovenous malformations, and lymphangiopathies. Summary The zebrafish embryo is a valuable vertebrate model in which in-vivo manipulations of biophysical forces due to cardiac contractility and blood flow can be performed. These analyses give important insights into biomechanical signaling pathways that control endothelial and endocardial cell behaviors. The technical advances using this vertebrate model will advance our understanding of the impact of biophysical forces in cardiovascular pathologies. KW - angiogenesis KW - cardiovascular system KW - Danio rerio (zebrafish) KW - genetic KW - tools KW - mechanobiology Y1 - 2021 U6 - https://doi.org/10.1097/MOH.0000000000000648 SN - 1065-6251 SN - 1531-7048 VL - 28 IS - 3 SP - 198 EP - 207 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - THES A1 - Sun, Xianlei T1 - Elasticity of fiber meshes derived from multiblock copolymers influences cell behaviors T1 - Elastizität von Fasergeweben abgeleitet Multiblockcopolymere beeinflussen das Zellverhalten. N2 - Objective: The behaviors of endothelial cells or mesenchymal stem cells are remarkably influenced by the mechanical properties of their surrounding microenvironments. Here, electrospun fiber meshes containing various mechanical characteristics were developed from polyetheresterurethane (PEEU) copolymers. The goal of this study was to explore how fiber mesh stiffness affected endothelial cell shape, growth, migration, and angiogenic potential of endothelial cells. Furthermore, the effects of the E-modulus of fiber meshes on human adipose-derived stem cells (hADSCs) osteogenic potential was investigated. Methods: Polyesteretherurethane (PEEU) polymers with various poly(p-dioxanone) (PPDO) to poly (ε-caprolactone) (PCL) weight percentages (40 wt.%, 50 wt.%, 60 wt.%, and 70 wt.%) were synthesized, termed PEEU40, PEEU50, PEEU60, and PEEU70, accordingly. The electrospinning method was used for the preparation of PEEU fiber meshes. The effects of PEEU fiber meshes with varying elasticities on the human umbilical vein endothelial cells (HUVECs) shape, growth, migration and angiogenic potential were characterized. To determine how the E-modulus of fiber meshes affects the osteogenic potential of hADSCs, the cellular and nuclear morphologies and osteogenic differentiation abilities were evaluated. Results: With the increasing stiffness of PEEU fiber meshes, the aspect ratios of HUVECs cultivated on PEEU materials increased. HUVECs cultivated on high stiffness fiber meshes (4.5 ± 0.8 MPa) displayed a considerably greater proliferation rate and migratory velocity, in addition demonstrating increased tube formation capability, compared with those of the cells cultivated on lower stiffness fiber meshes (2.6 ± 0.8 MPa). Furthermore, in comparison to those cultivated on lower stiffness fiber meshes, hADSCs adhered to the highest stiffness fiber meshes PEEU70 had an elongated shape. The hADSCs grown on the softer PEEU40 fiber meshes showed a reduced nuclear aspect ratio (width to height) than those cultivated on the stiffer fiber meshes. Culturing hADSCs on stiffer fibers improved their osteogenic differentiation potential. Compared with cells cultured on PEEU40, osteocalcin expression and alkaline phosphatase (ALP) activity increased by 73 ± 10% and 43 ± 16%, respectively, in cells cultured on PEEU70. Conclusion: The mechanical characteristics of the substrate are crucial in the modulation of cell behaviors. These findings indicate that adjusting the elasticity of fiber meshes might be a useful method for controlling the blood vessels development and regeneration. Furthermore, the mechanical characteristics of PEEU fiber meshes might be modified to control the osteogenic potential of hADSCs. N2 - Ziel: Das Verhalten von Endothelzellen oder mesenchymalen Stammzellen wird erheblich von den mechanischen Eigenschaften der Mikroumgebung beeinflusst. Hier wurden elektrogesponnene Fasernetze mit unterschiedlicher Elastizität aus Polyetheresterurethan (PEEU) hergestellt. Ziel dieser Arbeit war es, den Einfluss der Elastizität von Fasernetzen auf die Zellmorphologie, Proliferation, Migration und Angiogenese von Endothelzellen zu untersuchen. Außerdem war der Einfluss des E-Moduls von Fasersubstraten auf die Bindung an die Abstammungslinie von humanen Fettstammzellen (hADSCs) untersucht. Methoden: Polyesteretherurethane (PEEU) mit unterschiedlichen Poly(p-dioxanon) (PPDO) to Poly (ε-Caprolacton) (PCL)-Gewichtsverhältnissen (40:60, 50:50, 60:40, 70:30) wurden synthetisiert und als PEEU40, PEEU50, PEEU60 bzw. PEEU70 bezeichnet. Die Fasernetze wurden durch Elektrospinnen von PEEU hergestellt. Dann wurden humane Endothelzellen der Nabelschnurvene (HUVECs) auf diesen elektrogesponnenen Fasernetzen aus Polyetheresterurethan (PEEU) kultiviert, die sich in ihrer Elastizität unterscheiden. Zellmorphologie, Proliferation, Migration und Angiogenese von Endothelzellen auf den abbaubaren Substraten wurden charakterisiert. Für den Einfluss des E-Moduls von Fasersubstraten auf die Bindung an die Abstammungslinie von hADSCs-Zellen und die Kernmorphologie wurde die Fähigkeit zur osteogenen Differenzierung bewertet. Ergebnisse: Das Aspektverhältnis von HUVECs, die auf den Fasernetzen aus PEEU-Materialien kultiviert wurden, nahm mit zunehmender Steifheit der Materialien zu. HUVECs, die auf Fasernetzen mit hoher Steifheit (Young-Modul E = 4,5 ± 0,8 MPa) kultiviert wurden, zeigten eine höhere Proliferationsrate und eine signifikant schnellere Migrationsgeschwindigkeit sowie ein höheres Röhrenbildungsvermögen als die Zellen, die auf Fasernetzen mit niedriger Steifheit kultiviert wurden (E = 2,6 ± 0,8 MPa). Des Weiteren zeigten an steiferen PEEU70-Fasernetzen (PPDO: PCL = 70:30) gebundene hADSCs eine verlängerte Morphologie im Vergleich zu jenen, die auf weicheren Fasern kultiviert wurden. Das Kernaspektverhältnis (Breite gegen Länge eines Kerns) von hADSCs, die auf weicheren PEEU40-Fasern (PPDO: PCL = 40:60) kultiviert wurden, war niedriger als auf steiferen Fasern. Die osteogene Differenzierung von hADSCs wurde durch Kultivierung auf steiferen Fasern verstärkt. Im Vergleich zu PEEU40 wurde in Zellen auf PEEU70 eine 73 ± 10% ige Steigerung der Osteocalcin-Expression und eine 34 ± 16% ige Steigerung der Aktivität der alkalischen Phosphatase (ALP) beobachtet. Schlussfolgerung: Die mechanischen Eigenschaften des Substrats spielen eine Schlüsselrolle bei der Modulation des Zellverhaltens. Diese Ergebnisse deuten darauf hin, dass das Einstellen der Elastizität der Fasernetze eine potenzielle Strategie zur Modulation der Bildung oder Regeneration von Blutgefäßen sein könnte. Darüber hinaus könnte die Differenzierung von hADSCs durch die Anpassung der mechanischen Eigenschaften von elektrogesponnenen Fasern gestaltet werden. KW - PEEU KW - fiber mesh scaffolds KW - osteogenesis KW - angiogenesis KW - stiffness KW - hADSC KW - HUVEC KW - HUVEC KW - PEEU KW - Angiogenese KW - Gerüste aus Fasergeflecht KW - hADSC KW - Osteogenese KW - Steifheit Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-535285 ER -